Controlling the symmetry of direct-drive implosions with target shimming

Fredrick H. Séguin et al., MIT

APS 2005

Controlling the symmetry of direct-drive implosions with target shimming

Fredrick H. Séguin et al., MIT

APS 2005

Summary

1) Target shimming changes nuclear burn symmetry

- 2) Drive asymmetry results in burn asymmetry and reduced performance
- 3) Shimming could counteract drive asymmetry
 - Polar Direct Drive
 - Indirect Drive
- 4) A formula is proposed for estimating the amount of shimming necessary

Collaborators

M.I.T. Plasma Science and Fusion Center

> C.K. Li J.L. DeCiantis J.A. Frenje R.D. Petrasso J.R. Rygg

University of Rochester Laboratory for Laser Energetics

- V.A. Smalyuk
- F.J. Marshall
- J.A. Delettrez
- J.P. Knauer
- P.W. McKenty
- D.D. Meyerhofer
- S.P. Regan
 - S. Roberts
- T.C. Sangster

General Atomics

J.D. Kilkenny A. Greenwood

Lawrence Livermore National Laboratory

- K. Mikaelian
- H.S. Park
 - H. Robey
 - R. Tipton

APS 2005

Neutron imaging of DT burn at OMEGA

- L. Disdier *et al.*
- C. Christensen, G. Grim *et al.*

Study of P₄ shimming in indirect drive at the Sandia Z pinch

• D. Callahan, G. Bennet *et al.*

Two types of target were illuminated symmetrically by 22-kJ, 1-ns square laser pulses at OMEGA

Orthogonal proton emission imaging cameras were used to study the spatial distribution of nuclear burn

The spherical target imploded symmetrically

The shimmed targets imploded with prolate asymmetry

Each image is now characterized by two different radii (for the long and short axes), as plotted on the next page

Burn measurements and x-ray measurements show similar distortion in core and shell due to shimming

Asymmetric drive leads to asymmetric burn and reduced yield

There are systematic connections between burn asymmetry and each of its causes

Let's vary the shell thickness to get uniform implosion velocity and radius after the acceleration phase

The shell thickness variation required to keep the implosion velocity symmetric can be estimated from the ablation-driven rocket equations

For direct drive (from J.D. Lindl, PoP **2**, p. 3933):

$$\stackrel{\bullet}{m} = \alpha \ I^{1/3}; \quad v_{imp} = \beta \ I^{1/3} \ln\left(\frac{m_0}{m}\right)$$

To lowest order, the angular thickness distribution that gives uniform implosion velocity after acceleration is

$$\frac{\delta \tau(\theta)}{\langle \tau \rangle} \approx \frac{2}{3} \left[1 - \frac{1}{4} \frac{\langle d\tau \rangle_{ablation}}{\langle \tau \rangle} \right] \frac{\delta I(\theta)}{\langle I \rangle}$$

We can estimate what this means for typical OMEGA shots

$$22 \text{ kJ} \Rightarrow \left\langle d\tau \right\rangle_{ablation} \approx 10 - 12 \,\mu\text{m} \quad \Rightarrow \frac{\delta \tau(\theta)}{\langle \tau \rangle} \approx \frac{2}{3} \left[1 - \frac{3 \,\mu\text{m}}{\langle \tau \rangle} \right] \frac{\delta I(\theta)}{\langle I \rangle}$$
From data, we speculated
$$\frac{\delta \tau}{\langle \tau \rangle} \approx 20 \,\mu\text{m} \Rightarrow \frac{\delta \tau(\theta)}{\langle \tau \rangle} \approx 0.6 \,\frac{\delta I(\theta)}{\langle I \rangle}$$

$$\frac{\delta \tau}{\langle \tau \rangle} \approx \frac{1}{2} \frac{\delta I}{\langle I \rangle}$$

The shell thickness variation required to counterbalance a 10% intensity variation is

δ*T* ≈ 1.2 μm

Summary

1) Target shimming changes nuclear burn symmetry

- 2) Drive asymmetry results in burn asymmetry and reduced performance
- 3) Shimming could counteract drive asymmetry
 - Polar Direct Drive
 - Indirect Drive
- 4) A formula is proposed for estimating the amount of shimming necessary

