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Summary

• An investigation of hydrodynamic equivalence was carried out 
using implosions with different mixtures of D2 and 3He

• The experimental yield scaling was found to deviate from that 
expected assuming hydrodynamic equivalence

• A similar deviation was seen over a wide range of conditions, 
including:

◦ Simultaneously for D-D and D-3He nuclear reactions
◦ Implosions with different shell thicknesses
◦ Implosions with different fill pressures
◦ For shock burn and compression burn

• This deviation is not explained by measurements of ion 
temperature and initial fill composition
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Hydrodynamically equivalent fuels have the
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Fill pressures for different fill compositions are 

chosen such that on full ionization the 
following are equivalent:

• ρ
• (ni+ne) 
• EOS 

For D2(X)3He(Y) filled capsules, hydro-
equivalence to a D2(15) capsule requires:
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D + D ⇒  3He(0.8) + n(2.5 MeV)
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DD-n and D3He reaction yields scale 
differently with fuel composition
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Anticipated yield scaling:
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All yields will be normalized according to the 
scaling anticipated by the composition
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Anticipated yield scaling: Normalized yield scaling:
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The ratio of yields can be used to estimate a 
burn-averaged ion temperature
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DD-n experimental yield does not scale as 
expected based on hydro-equivalence
DD-n Yield (norm)
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D3He compression yield also deviates from 
hydro-equivalent scaling

Y1n-norm = Y1n (15 atm/X)2
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Yield scaling deviation is not explained by 
ion temperature measurements
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Yield scaling deviation is not explained by 
ion temperature measurements
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Yield scaling deviation is not explained by
a fill composition error
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• Premixed: composition error ~10-4
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• Fill composition error ≈ 1-2% -- but fill 
error must be 50% to follow trend

• A different composition error is needed 
to explain Y1n and Y1p data



Yield scaling deviation is seen for
shock burn and compression burn

D3He-p shock Yield (norm)
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Yield scaling deviation is also seen for 
thinner shells and for lower pressures

Y1n-norm = Y1n (3 atm/X)2
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• An investigation of hydrodynamic equivalence was carried out 
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