Testing Hydrodynamic Equivalence of Implosions with different D₂ + ³He mixtures

J.R. Rygg et al. MIT - PSFC 47th American Physical Society DPP Meeting Denver, CO, Oct 24-28, 2005

Contributors

J.A. Frenje, C.K. Li, F.H. Séguin, and R.D. Petrasso

Plasma Science and Fusion Center Massachusetts Institute of Technology

J.A. Delettrez, S.P. Regan, V.Yu Glebov, V.N. Goncharov, D.D. Meyerhofer, T.C. Sangster Laboratory for Laser Energetics University of Rochester

J.R. Rygg et al. MIT - PSFC 47th American Physical Society DPP Meeting Denver, CO, Oct 24-28, 2005

Summary

- An investigation of hydrodynamic equivalence was carried out using implosions with different mixtures of D₂ and ³He
- The experimental yield scaling was found to deviate from that
 expected assuming hydrodynamic equivalence
- A similar deviation was seen over a wide range of conditions, including:
 - Simultaneously for D-D and D-³He nuclear reactions
 - Implosions with different shell thicknesses
 - Implosions with different fill pressures
 - $\circ~$ For shock burn and compression burn
- This deviation is not explained by measurements of ion temperature and initial fill composition

Hydrodynamically equivalent fuels have the same mass density and total particle density

Fill pressures for different fill compositions are chosen such that on full ionization the following are equivalent:

- ρ
- (n_i+n_e)
- EOS

For $D_2(X)^3$ He(Y) filled capsules, hydroequivalence to a $D_2(15)$ capsule requires:

$$\frac{X}{15atm} + \frac{Y}{20atm} = 1$$

Yields from two nuclear reactions can be used to diagnose OMEGA implosions

DD-n and D³He reaction yields scale differently with fuel composition

All yields will be normalized according to the scaling anticipated by the composition

The ratio of yields can be used to estimate a burn-averaged ion temperature

D + ${}^{3}\text{He} \rightarrow {}^{4}\text{He} (3.6) + p (14.7 \text{ MeV})$ D + D $\rightarrow {}^{3}\text{He} (0.8) + n (2.45 \text{ MeV})$

DD-n experimental yield does not scale as expected based on hydro-equivalence

DD-n Yield (norm)

D³He compression yield also deviates from hydro-equivalent scaling

Yield scaling deviation is not explained by ion temperature measurements

Yield scaling deviation is not explained by ion temperature measurements

Yield scaling deviation is not explained by a fill composition error

Yield scaling deviation is seen for shock burn and compression burn

Yield scaling deviation is also seen for thinner shells and for lower pressures

Summary

- An investigation of hydrodynamic equivalence was carried out using implosions with different mixtures of D₂ and ³He
- The experimental yield scaling was found to deviate from that
 expected assuming hydrodynamic equivalence
- A similar deviation was seen over a wide range of conditions, including:
 - Simultaneously for D-D and D-³He nuclear reactions
 - Implosions with different shell thicknesses
 - Implosions with different fill pressures
 - $\circ~$ For shock burn and compression burn
- This deviation is not explained by measurements of ion temperature and initial fill composition