Numerical Calculations of Laser-Generated
MeV Electrons and Characteristic X-Ray

Production in Copper Foil Targets -
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Summary

A modified version of LSP* is able to correctly compute the
characteristic K-shell emission from laser irradiated foil targets

without the ad hoc introduction of hot electron refluxing
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* K, photon production efficiencies have been computed for parameters
relevant to recent Cu foil experiments’ on the 100-TW and PW RAL
systems for laser intensities in the range I = 1018-1020 W/cm?2

e The computed yields depend strongly on the presence of large
self-fields (B~10 MG, E~107 kV/cm) that create trapped and
refluxing populations of hot electrons.

* Results compare favorably with the experiment in terms of the absolute
yield and its dependence on laser intensity and target thickness.

*D. R. Welch et al., Nucl. Instrum. Methods Res. A 464, 134 (2001).
TC6973a TC. Stoeckl et al., Bull. Am. Phys. Soc. 49, 1004 (2004).
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Monte Carlo (MC) models can only be made to agree
with the RAL data if we allow for “refluxing”
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The LSP model automatically describes refluxing
because it self-consistently solves for EM fields
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Unlike MC, hybrid PIC includes the generation of sheath fields,
anomalous stopping, resistive inhibition and collimation
hot current.

K-shell photon production efficiency is a result of the interplay
between electron energy loss (dE/ds) and the energy dependence
of the K-shell ionization cross section o(E).

The LSP plasma model has been extended by using a combination of
the “collisional plasma” model and ITS routines.
— collisional slowing down and scattering*

— produce and transport x-ray photons

Electrons are “promoted” from the background with Wilks scaling.t

*A. Solodov et al., QP1.138
'S. C. Wilks et al., Phys. Rev. Lett. 69, 1383 (1992).



LSP calculations exhibit complex hot electron trajectories

including refluxing from the foil boundaries
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 Magnetic field strength and sample particle trajectories in 20 um Cu foil.
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Reasonable agreement is obtained between
experimental K, yield and LSP yield
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e Experimental points are a compilation of 100 TW and PW data where
intensity is changed by varying beam energy (100 — 500 J) and spot

size for a ~1ps pulse

* LSP collision model under-predicts stopping at high electron energy*
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K, yield is insensitive to target size in both
experiments* and LSP calculations
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TC7247 *C. Stoeckl et al., Bull. Am. Phys. Soc 49 104 (2004).



Summary/Conclusions
A modified version of LSP* is able to correctly compute the
characteristic K-shell emission from laser irradiated foil targets

without the ad hoc introduction of hot electron refluxing

UR
LLE

* K, photon production efficiencies have been computed for parameters
relevant to recent Cu foil experiments’ on the 100-TW and PW RAL
systems for laser intensities in the range I = 1018-1020 W/cm?2

e The computed yields depend strongly on the presence of large
self-fields (B~10 MG, E~107 kV/cm) that create trapped and
refluxing populations of hot electrons.

* Results compare favorably with the experiment in terms of the absolute
yield and its dependence on laser intensity and target thickness.

*D. R. Welch et al., Nucl. Instrum. Methods Res. A 464, 134 (2001).
TC6973a TC. Stoeckl et al., Bull. Am. Phys. Soc. 49, 1004 (2004).



The k-photon yield and its dependence on laser

intensity can be estimated by a simple model*
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f(Eo)
e Determine production efficiency
ty Nk

Ne—x = M _oEL’ Ny = (Nk,obs/Fobs>

by integrating over path b

N _e (0,Eo) (s,E)
o Smax (EO)
N =Ne deOf(EO> fds Lk cu 85 <" Foilthicknessd |
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Probability per unit path for electron with
energy E(s,E) to produce a k-photon

* Energy distribution f(EO) Is uncertain
1

— e.g., f(e)dE=T exp (- E/T)dE, with T related to I with Wilks
1/2
scaling: T~ W, =0.511 [(I =1,gA2um/1-37) - 1] MeV

TC7001 *Green and Cosslett (1961).





