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Motivation

• Stopping in solids … Bohr, Bethe, Molière, Seltzer…
• Fast ignition

– Electron penetration and straggling
– Energy deposition profile
– Beam blooming

• Preheat … to determine tolerable levels
• Astrophysics (e.g. relativistic astrophysical jets)

• R. Petrasso et al., GO1.0005 ….e preheat
• C. Chen et al., QP1.00137………simulations

Companion presentations:



Fundamental elements of this plasma  
stopping model

Summary

For hydrogenic plasmas, binary e→e and e→i scattering 
are comparable, and must be treated on an equal footing

Energy loss, penetration, and scattering are inextricably 
coupled together

Blooming and straggling effects, a consequence of 
scattering,  lead to a non-uniform,  extended region of 
energy  deposition

Whenever the Debye length is smaller than the gyro 
radius, binary interactions will dominate penetration, 
blooming, and straggling effects



Additional elements of this plasma 
stopping model

The results: 

Are insensitive to plasma density and temperature 
gradients

Depend largely on ρ<x>

Have strong Z dependence 

Applies to degenerate plasmas

Summary
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Electron energy loss along the path (continuous slowing 
down) does not include the effects of scattering
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Electron scattering must be included in calculating 
the energy deposition
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Scattering reduces the electron linear penetration, 
and it results in longitudinal straggling and beam 
blooming

Combine all these effects, the energy deposition profile is modified
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ρ

nb/ne~10-2

nb/ne > 10-2 :   
self fields, 
instabilities, 
….

nb/ne < 10-2 :   
scattering

Laser

For the interior of a FI capsule, scattering dominates 
other mechanisms in affecting energy deposition, 
beam blooming, and straggling
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This talk focuses on dense, deeply collisional regimes 
for which self-field corrections are unimportant
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When  λD < rG, blooming, straggling, and penetration are 
determined by (collisional) binary interactions

Te=5 keV; ρ=300g/cm3 DT plasma ne ~ 1026/cm3

Only for very small deposition regions (beam size) 
and very large beam energy does rG approach λD
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This plasma model includes necessary effects that 
were previously untreated:  

• Couples directly scattering and energy loss

• Includes the effects of longitudinal momentum loss  
[∆v=v(1-cosθ)] upon energy loss

• Treats the case of full energy loss

• Results in both blooming and straggling

This model is insensitive to plasma screening, and applies to 
degenerate plasmas (e.g. for e preheat)

In addition:



Electron angular and spatial distributions are calculated 
by solving a diffusion equation
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• Angular distribution mean deflection angle, <cosθ>

• Longitudinal distribution penetration and straggling

• Lateral distribution beam blooming



The effects of energy loss and scattering must 
be treated with a unified approach
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For hydrogenic plasmas, e-e scattering is comparable 
to e-i scattering (for γ <10) and must be included
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Scattering are insensitive to plasma screening 
models
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λD  ---- Debye length

λd  ---- inter-particle distance

λTF ---- Thomas-Fermi 

ρ = 300 g/cm3; Te = 5 keV

scattering
Energy loss



Multiple scattering enhances electron 
linear-energy deposition
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ρ = 300 g/cm3; Te = 5 keV
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For 1-MeV electrons, straggling and blooming are 
proportional to          when the energy loss > 40% 

Assumption of uniform energy deposition is reasonable when 
∆E < 40%,  as little straggling and blooming has occurred
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For electrons with low energies, blooming and straggling 
become important even with little energy loss (∆E) 
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An effective Bragg peak results from the effects of 
blooming and straggling 

Conventional Bragg peak results from the velocity match 
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The qualitative features of this model --- penetration, 
blooming and straggling --- are replicated by Monte 
Carlo calculations for solid DT 

1 MeV e

> 3 µm

~14 µm

∼5 µm

≤ 3 µm

∼5 µm

14 .6 µm

∼ 4.3 µm

∼ 4.3 µm

~2.6 µm ~2.6 µm

1 MeV e

This model Monte Carlo
Calculated by Cliff Chen



Combine all these effects, electron energy 
deposition profile is modified 
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This insensitivity indicates that density and temperature 
gradients will not impact these results

Penetration, blooming and straggling are insensitive 
to the plasma density and temperature
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Penetration, blooming and straggling have a 
strong dependence upon the plasma Z
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Penetration drops with decreasing electron energy, 
while blooming and straggling increase
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Scattering will be important for setting the requirements 
of Fast Ignition (Eig, Wig and Iig)

For NIF fast ignition capsules,
2-3 MeV electrons are required
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Fundamental elements of this plasma  
stopping model

Summary

For hydrogenic plasmas, binary e→e and e→i scattering 
are comparable

Energy loss, penetration  and scattering are inextricably 
coupled together

Blooming and straggling effects, a consequence of 
scattering,  lead to a non-uniform,  extended region of 
energy deposition

Whenever the Debye length is smaller than the gyro 
radius, binary interactions will dominate penetration, 
straggling and blooming effects

This model is insensitive to the plasma screening, and 
applies to degenerate plasmas (e.g. for e preheat )


