Stopping, blooming, and straggling of directed energetic electrons in hydrogenic and arbitrary-Z plasmas

C. K. Li and R. D. Petrasso MIT

47th Annual Meeting of the America Physics Society Division of Plasma Physics Denver, CO October 24-28, 2005

Motivation

- Fast ignition
 - Electron penetration and straggling
 - Energy deposition profile
 - Beam blooming
- Preheat ... to determine tolerable levels
- Astrophysics (*e.g.* relativistic astrophysical jets)

Companion presentations:

- R. Petrasso et al., GO1.0005e preheat
- C. Chen et al., QP1.00137.....simulations

Fundamental elements of this plasma stopping model

- □ For hydrogenic plasmas, binary $e \rightarrow e$ and $e \rightarrow i$ scattering are comparable, and must be treated on an equal footing
- Energy loss, penetration, and scattering are inextricably coupled together
- Blooming and straggling effects, a consequence of scattering, lead to a non-uniform, extended region of energy deposition
- Whenever the Debye length is smaller than the gyro radius, binary interactions will dominate penetration, blooming, and straggling effects

Additional elements of this plasma stopping model

The results:

- Are insensitive to plasma density and temperature gradients
- **Depend largely on** $\rho < x >$
- □ Have strong Z dependence
- □ Applies to degenerate plasmas

Outline

Introduction

- □ Relevance to fast ignition
- □ Models
- Discussions

Electron energy loss along the path (continuous slowing down) does not include the effects of scattering

Binary interaction + plasma oscillation

$$\frac{dE}{ds} = \left(\frac{dE}{ds}\right)_{Binary} + \left(\frac{dE}{ds}\right)_{Oscillation}$$

mathematical equivalence

Dielectric response function

$$\frac{dE}{ds} = Ze \int \frac{d^3k}{(2\pi)^3} \frac{i\mathbf{k} \cdot \mathbf{v}}{v} \frac{4\pi Ze}{k^2 \varepsilon_L(k, \mathbf{k} \cdot \mathbf{v})}$$

Electron scattering must be included in calculating the energy deposition

Scattering reduces the electron linear penetration, and it results in longitudinal straggling and beam blooming

Outline

□ Introduction

- **Relevance to fast ignition**
- □ Models
- Discussions

For the interior of a FI capsule, scattering dominates other mechanisms in affecting energy deposition, beam blooming, and straggling

This talk focuses on dense, deeply collisional regimes for which self-field corrections are unimportant

When $\lambda_D < r_G$, blooming, straggling, and penetration are determined by (collisional) binary interactions

Only for very small deposition regions (beam size) and very large beam energy does r_G approach λ_D

Outline

□ Introduction

- □ Relevance to fast ignition
- Models
- Discussions

This plasma model includes necessary effects that were previously untreated:

- Couples directly scattering and energy loss
- Includes the effects of longitudinal momentum loss
 [Δv=v(1-cosθ)] upon energy loss
- Treats the case of full energy loss
- Results in both blooming and straggling

In addition:

This model is insensitive to plasma screening, and applies to degenerate plasmas (e.g. for e preheat)

Electron angular and spatial distributions are calculated by solving a diffusion equation

$$\frac{\partial f}{\partial s} + \mathbf{v} \cdot \nabla f = N \int [f(\mathbf{x}, \mathbf{v}', s) - f(\mathbf{x}, \mathbf{v}, s)] \sigma (|\mathbf{v} - \mathbf{v}'|) d\mathbf{v}'$$

- Angular distribution \rightarrow mean deflection angle, <cos θ >
- Longitudinal distribution → penetration and straggling
- Lateral distribution → beam blooming

Where:
$$k_{\ell}(E) = n_i \int \left(\frac{d\sigma}{d\Omega} \right) [1 - P_{\ell}(\cos \theta)] d\Omega$$

For hydrogenic plasmas, *e-e* scattering is comparable to *e-i* scattering (for $\gamma \leq 10$) and must be included

Scattering are insensitive to plasma screening models

Multiple scattering enhances electron linear-energy deposition

$$\frac{dE}{dx} = <\cos\theta >^{-1}\frac{dE}{ds}$$

where

$$<\cos\theta>=\exp\left(-\int_{E_0}^{E}\kappa_1\left(E'\left(\frac{dE'}{ds}\right)^{-1}dE'\right)\right)$$

proportional to $\sqrt{\langle x \rangle}$ when the energy loss > $\overline{40\%}$ 6 STDV (μm) 4 Σ_{R} **<x>:** ~ **14** μ**m** ∆E ~ 40% 2 Σ_B: ~ **5** μ**m** Σ_R: ~ **3** μ**m** 0 0 2 3 4 5 <**x**>^{1/2}

For 1-MeV electrons, straggling and blooming are

Assumption of uniform energy deposition is reasonable when $\Delta E < 40\%$, as little straggling and blooming has occurred

For electrons with low energies, blooming and straggling become important even with little energy loss (ΔE)

An effective Bragg peak results from the effects of blooming and straggling

The qualitative features of this model --- penetration, blooming and straggling --- are replicated by Monte Carlo calculations for solid DT

Combine all these effects, electron energy deposition profile is modified

straggling requires a rigorous numerical calculation

Outline

□ Introduction

- □ Relevance to fast ignition
- □ Models
- Discussions

Penetration, blooming and straggling are insensitive to the plasma density and temperature

This insensitivity indicates that density and temperature gradients will not impact these results

Penetration, blooming and straggling have a strong dependence upon the plasma Z

Assuming all elements are fully ionized and have same n_e

 \rightarrow equal *R* --- the total path length

Penetration drops with decreasing electron energy, while blooming and straggling increase 0.4 250 40 $\frac{\Sigma_{\rm B}}{\langle \boldsymbol{X} \rangle}$ 200 Penetration (µm) Σ_{B} Distance (μm) $\frac{\overline{\Sigma_{B}}}{\langle \boldsymbol{X} \rangle}$ 150 0.2 20 Σ_{R} 100 <x> 50 0 0 0 5 10 0 5 10 0

Electron Energy (MeV)

Electron Energy (MeV)

Scattering will be important for setting the requirements of Fast Ignition (E_{iq} , W_{iq} and I_{iq})

Summary

Fundamental elements of this plasma stopping model

- □ For hydrogenic plasmas, binary $e \rightarrow e$ and $e \rightarrow i$ scattering are comparable
- Energy loss, penetration and scattering are inextricably coupled together
- Blooming and straggling effects, a consequence of scattering, lead to a non-uniform, extended region of energy deposition
- Whenever the Debye length is smaller than the gyro radius, binary interactions will dominate penetration, straggling and blooming effects
- □ This model is insensitive to the plasma screening, and applies to degenerate plasmas (e.g. for e preheat)