Update on the Rochester Optical Streak System

P. A. Jaanimagi, R. Boni, and D. D. Meyerhofer University of Rochester Laboratory for Laser Energetics 47th Annual Meeting of the American Physical Society Division of Plasma Physics Denver, CO 24–28 October 2005 Summary

The ROSS camera is a comprehensive diagnostic system with autofocusing and self-calibration capability

- The high-precision measurements demanded by the LLE experimental program require precise setup and calibration of the diagnostics.
- The optical calibration module incorporates an extensive imaging, flat-field correction, geometric-distortion, and time-calibration capability.
- All functions can be accessed and monitored remotely.

All pixels in the recorded image were not created equal

- The system response is dependent on the spatial and temporal position and the focusing conditions.
- To make pretty pictures and FWHM measurements requires minimal calibration.
- Serious quantitative measurements (SNR > 10, DR > 10, nonlinearity < 10%) require extensive calibrations.
- These issues are addressed in the ROSS design with the optical calibration module (OCM).

The input imaging system is an Offner triplet with motorized controls for the dual object planes and the secondary mirror

Flat-fielding a CCD recording system elevates its performance to a near-quantum-limited detector

UR

The ROSS–OCM design uses an LED, homogenizer, and a slow ramp to flat-field the system

- Input optics, photocathode quantum efficiency, photoelectron transport, phosphor-conversion efficiency, fiber-optic coupling, and CCD quantum efficiency are all independent of the signal level.
- Uses a 1- to 10-s duration ramp to simplify the illuminationsource design.
- Multiple-wavelength CW–LED's are available internally, or white light passed through an interference filter can be fed in via fiber optics.
- Homogenizer output is spatially uniform to 0.25%.

Geometric distortions result from electron-optic aberrations and mechanical misalignments

• Manufacturers of streak tubes are reluctant to address these issues—\$\$

UR

- Use ROSS–OCM flat-field subsystem plus spatial and temporal modulation to produce raw uncorrected images
- $S(x,y) = Jacobian(x,y,x^,y^) \times S(x^,y^), x = U(x^,y^) and y = (x^,y^)$

Time calibration is accomplished with an on-board, 664-nm, 3-GHz comb generator

- Verify system operation prior to shot
- External source may also be coupled into any or all channels

UR

The autofocus capability allows local optimization of the spatial or temporal

Geometric distortion image shows the main EO aberration is field curvature.

Annulus is the intersection of a curved image plane with a flat screen

The P820 streak tube provides a 2-ps time resolution capability for OMEGA EP diagnostics

• The peak current handling capability is 1.8 mA.

E14133

Summary/Conclusions

The ROSS camera is a comprehensive diagnostic system with autofocusing and self-calibration capability

- The high-precision measurements demanded by the LLE experimental program require precise setup and calibration of the diagnostics.
- The optical calibration module incorporates an extensive imaging, flat-field correction, geometric-distortion, and time-calibration capability.
- All functions can be accessed and monitored remotely.