Analysis of a Direct-Drive, 1-MJ, Wetted-Foam Target Design

T. J. B. Collins *et al*. University of Rochester Laboratory for Laser Energetics 47th Annual Meeting of the American Physical Society Division of Plasma Physics Denver, CO 24–28 October 2005

Summary

The stability of a 1-MJ wetted-foam design has been examined with respect to power balance and ice roughness

- This design experiences tolerable gain degradation with a 1.25- μ m initial ice roughness.
- Simulations including mistiming and beam-to-beam power imbalance also show modest effects on target gain.
- Preliminary imprint simulations show moderate gain reduction when single-beam nonuniformity modes 10–60 are included.

R. Epstein, V. N. Goncharov, P. W. McKenty P. B. Radha, and S. Skupsky

University of Rochester Laboratory for Laser Energetics

Wetted foams have higher absorption allowing a thicker shell and greater stability

- Foam density is chosen by balancing higher absorption with increased radiative preheat.
- Foam layer thickness is chosen so that foam is entirely ablated.

1-MJ designs	All DT	Wetted foam
Gain	29	39
Absorption (%)	57 %	91 %
hoR (g/cm²)	1.1	1.0
Margin (%)	46 %	44%
Peak IFAR	77	44
Α/θ	27 %	9%

The pulse is within the limits of NIF pulse-shaping capabilities

- Pulses on the NIF are decomposed into a series of Gaussian impulses and filtered with a 1-GHz, low-pass Bessel filter.
- The design is robust in 1-D to control-point variation.

The picket is designed to shape the adiabat while maintaining gain and implosion velocity

- Stability is gauged by the ratio A/θ of the rms bubble amplitude to the shell thickness.
- The picket has been designed to provide an ablator adiabat of 10 with an ice adiabat of 2, and with an implosion velocity of 4.3×10^7 cm/s.

This design tolerates a 1.25- μ m initial ice roughness

- The ice-roughness spectrum is given by $a_{\ell} = a_0 \ell^{-\beta}$.
- In cryogenic targets fabricated at LLE: $\beta \sim 2.(1)$
- 2-D DRACO simulations including modes $\ell = 2-50$ were performed.

¹D. Harding and D. Edgell, private communication (2005).

The beam-to-beam imbalance perturbation amplitude is $\sim 1\%$ and the mistiming $\sim 10\%$, early in time

- UR 🔌
- Beam port locations contribute a perturbation of ~1% in ℓ = 6.
- Beam-to-beam imbalance is dominated by modes $\ell = 2-12$, with an amplitude of $\sim 1\%$.
- Beam mistiming contributes ~5–15% in modes $\ell = 1-3$, ${}^{\bullet}$ primarily during the picket.*

The design is robust to pulse mistiming and beam-to-beam power imbalance

- A number of power-imbalance and mistiming histories¹ with an rms mistiming of 30 ps were simulated in 2-D, including modes $\ell = 2-12$.
- The average gain reduction due to these effects was 12%.

UR

¹O. S. Jones *et al.*, in *NIF Laser System Performance Ratings* (SPIE, Bellingham, WA, 1998), Vol. 3492, pp. 49–54.

1-D and 2-D simulations indicate the design can tolerate single-beam nonuniformity

- A 1-D Rayleigh–Taylor postprocessor¹ found a 7% ratio of bubble amplitude to shell thickness.
- Imprint sensitivity is estimated simulating the most dangerous mode, $\ell = 32$, with the amplitude of modes 10–60 added in quadrature.
- Multimode imprint simulations are underway.

UR

Summary/Conclusions

The stability of a 1-MJ wetted-foam design has been examined with respect to power balance and ice roughness

UR 🔌

- Simulations including mistiming and beam-to-beam power imbalance also show modest effects on target gain.
- Preliminary imprint simulations show moderate gain reduction when single-beam nonuniformity modes 10–60 are included.
- Multimode imprint simulations are underway.