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The stability of a 1-MJ wetted-foam design has  
been examined with respect to power balance  
and ice roughness

TC7153

• This design experiences tolerable gain degradation 
with a 1.25-nm initial ice roughness.

• Simulations including mistiming and beam-to-beam 
power imbalance also show modest effects on 
target gain.

• Preliminary imprint simulations show moderate gain 
reduction when single-beam nonuniformity modes 
10–60 are included.
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Wetted foams have higher absorption allowing  
a thicker shell and greater stability

• Foam density is chosen by balancing 
higher absorption with increased 
radiative preheat.

• Foam layer thickness is chosen
 so that foam is entirely ablated.

1-MJ designs All DT Wetted foam

Gain 29 39

Absorption (%) 57% 91%

tR (g/cm2) 1.1 1.0

Margin (%) 46% 44%

Peak IFAR 77 44

A/i 27% 9%
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The pulse is within the limits of NIF  
pulse-shaping capabilities

TC7155

• Pulses on the NIF are decomposed into a series of Gaussian impulses 
and filtered with a 1-GHz, low-pass Bessel filter.

• The design is robust in 1-D to control-point variation.
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This design tolerates a 1.25-nm initial ice roughness 

TC7157

• The ice-roughness spectrum is given by a, = a0,–b.

• In cryogenic targets fabricated at LLE: b ~ 2.(1)

• 2-D DRACO simulations including modes , = 2–50 were performed.

1D. Harding and D. Edgell, private communication (2005).
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The beam-to-beam imbalance perturbation amplitude  
is ~1% and the mistiming ~10%, early in time

TC7158

• Beam port locations contribute a perturbation of ~1% in , = 6.

• Beam-to-beam imbalance is dominated by modes , = 2–12, 
with an amplitude of ~1%.

• Beam mistiming contributes ~5–15% in modes , = 1–3, 
primarily during the picket.*

*R. Epstein, FO3.13.



The design is robust to pulse mistiming  
and beam-to-beam power imbalance

TC7159

• A number of power-imbalance and mistiming histories1 with an rms 
mistiming of 30 ps were simulated in 2-D, including modes , = 2–12.

• The average gain reduction due to these effects was 12%.

1O. S. Jones et al., in NIF Laser System Performance Ratings 
(SPIE, Bellingham, WA, 1998), Vol. 3492, pp. 49–54.



1-D and 2-D simulations indicate the design 
can tolerate single-beam nonuniformity

TC7160

• A 1-D Rayleigh–Taylor post-
processor1 found a 7% ratio 
of bubble amplitude to shell 
thickness.

• Imprint sensitivity is estimated 
simulating the most dangerous 
mode, , = 32, with the amplitude 
of modes 10–60 added in 
quadrature.

• Multimode imprint simulations 
are underway.

1V. N. Goncharov et al., Phys. Plasmas 7, 5118 (2000).



The stability of a 1-MJ wetted-foam design has  
been examined with respect to power balance  
and ice roughness

TC7153a

Summary/Conclusions

• This design experiences tolerable gain degradation 
with a 1.25-nm initial ice roughness.

• Simulations including mistiming and beam-to-beam 
power imbalance also show modest effects on 
target gain.

• Preliminary imprint simulations show moderate gain 
reduction when single-beam nonuniformity modes 
10–60 are included.

• Multimode imprint simulations are underway.




