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We are measuring shock timing to the
accuracies required for ICF ignition

E14086

•	 Multiple shock waves condition ICF capsules before implosion; 	
	 accurate timing of these shocks is critical to target performance.

•	 The OMEGA laser is used to develop shock-timing techniques
	 for OMEGA experiments and the National Ignition Campaign.

•	 In experiments with multiple shocks in CH and cryogenic
	 deuterium targets we measure
		  –	 shock velocities to 3% and
		  –	 shock coalescence and breakout times with
			   better than < 50 ps accuracy.

•	 These events produce unambiguous features in the data that
	 can be resolved with accuracies that exceed the requirements
	 for ignition targets.

Summary



Collaborators

J. E. Miller, W. Theobald, T. J. B. Collins, I. V. Igumenshev,
R. S. Craxton, and D. D. Meyerhofer

University of Rochester
Laboratory for Laser Energetics

D. G. Hicks, P. M. Celliers, J. Eggert,
G. W. Collins, D. Munro, and J. Edwards

Lawrence Livermore National Laboratory

R. E. Olson, G. A. Rochau, and R. J. Leeper

Sandia National Laboratory



±
±



±

n



We use proven diganostics to observe
and time laser-driven shockwaves

E14089

•	 Planar targets allow a study of shock timing in cryogenic D2.
		  –	 1-D approximation is good for the initial shocks

•	 Optical diagnostics such as VISAR and self-emission detect shocks
	 with the high accuarcy needed for EOS studies.

•	 These will be used to provide shock velocity (to <3%)
	 and coalescence data (<50 ps) for the first three shocks.

•	 X-ray radiography will be required to measure the timing
	 and trajectory of the final shock.

•	 OMEGA experiments have demonstrated these techniques
	 to observe multiple shocks.

Shock-Timing Strategy
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Shock velocity and self-emission in laser-driven shock
experiments are measured optically

At ICF pressures, shocks are hot (> 5,000°K), steep, and
overdense.  They emit and reflect optical wavelengths.

Liquid
D2

Ablator Window

Shock

Cryogenic
cell

*J. Ortel (LANL)

23°

48°

Probe
laser

1 2

f/3

VISAR’s
Self-emission

camera*
(600-1000 nm)



The velocity interferometer system for any reflector 
(VISAR) detects Doppler shifts to measure velocity
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Shock timing is studied using
two pulses and CH targets
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1-D simulations, including a ray tracing routine, are in 
good agreement with double-shock experiments in CH

32216
32213-16
35143, 35790
E13385c

n

τ
τ



E14171

Simultaneous VISAR and self-emission profiles
provide corroborative data
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Simulations of shock coalescence in cryogenic D2
agree well with self-emission measurements
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Ionization by x-rays can limit diagnosis
of shock velocity during the laser pulse
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A strong absorption and phase shifts are measured
in x-ray ionized polystyrene and diamond 
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Ionization by x-rays creates “free” electrons and in 
some materials optical transitions in the valence band
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Al pusher Shock front in CH

Unshocked CH

An x-ray radiograph of an ~4 Mb shock in polystyrene 
shows a spherical shock driven by an Al pusher
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• Drive pulse: 1 ns at ~2 × 1014 W/cm2
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We are measuring shock timing to the
accuracies required for ICF ignition

E14086

•	 Multiple shock waves condition ICF capsules before implosion; 	
	 accurate timing of these shocks is critical to target performance.

•	 The OMEGA laser is used to develop shock-timing techniques
	 for OMEGA experiments and the National Ignition Campaign.

•	 In experiments with multiple shocks in CH and cryogenic
	 deuterium targets we measure
		  –	 shock velocities to 3% and
		  –	 shock coalescence and breakout times with
			   better than < 50 ps accuracy.

•	 These events produce unambiguous features in the data that
	 can be resolved with accuracies that exceed the requirements
	 for ignition targets.

Summary/Conclusions




