

R. Betti

Fusion Science Center for Extreme States of Matter and Fast-Ignition Physics University of Rochester Laboratory for Laser Energetics 47th Annual Meeting of the American Physical Society Division of Plasma Physics Denver, CO 24–28 October 2005

TC7084a

Summary

Significant progress has been made in the design of the fuel assembly for fast ignition using low-adiabat low-velocity implosions

- ρ**R** ≃ 3 g/cm²
- 300 < ρ < 500 g/cc
- hot-spot volume/total volume ~5% to 7%
- estimated yield ~120 MJ (if ignited)
- A 25-kJ capsule can be assembled on the OMEGA laser to achieve
 - ρ R \simeq 0.8 g/cm², 300 < ρ < 500 g/cc
 - hot-spot volume/total volume <15%</p>
- Planned plastic–shell implosion experiments on OMEGA are expected to achieve $\rho R \simeq 0.3-0.5 \text{ g/cm}^2$ and $\rho \simeq 200-300 \text{ g/cc}$.

Ignition with fast ignition requires a fuel assembly with densities of 500 > ρ > 300 g/cc, ρ R > 0.4 g/cm² and small hot-spot volume

S. Atzeni, Phys. Plasmas <u>6</u>, 3316 (1999).

C. K. Li and R. D. Petrasso, Phys. Rev. E. <u>70</u>, 067401 (2004).

TC7069

Scaling laws relating stagnation to in-flight hydrovariables are derived from conservation equations

(1) Mass
$$\rightarrow \rho_{s} \Delta_{s} \sim \frac{M_{sh}}{R_{h}^{2} \Sigma(A_{s})} \sim \frac{E_{K}}{R_{h}^{2} V_{i}^{2} \Sigma(A_{s})}$$

(2) Energy $\rightarrow E_{K} \sim P_{s} (R_{h} + \Delta_{s})^{3}$

(3) Entropy
$$\rightarrow \alpha_{s} \sim \alpha_{if} \operatorname{Mach}_{if}^{2/3}$$

 $\begin{array}{ll} \textbf{A}_{s} \equiv \textbf{R}_{h} / \Delta_{s} & \longleftarrow \text{Stagnation aspect ratio} \\ \Sigma(\textbf{x}) \equiv \textbf{1} + \textbf{1} / \textbf{x} + \textbf{1} / (\textbf{3}\textbf{x}^{2}) & \longleftarrow \text{Volume factor} \\ \alpha_{\text{if}} \equiv \text{in-flight adiabat} \end{array}$

Unknowns $\rightarrow P_s$, ρ_s , A_s , Δ_s

R. Betti and C. Zhou, Phys. Plasmas (in press).

Simulations of optimized implosions (max ρ R and ρ) yield a scaling relation for the stagnation aspect ratio

The areal density is weakly dependent on velocity; it increases for lower adiabats and greater energies

The density is independent of energy; it increases with the velocity and decreases with the adiabat

 $\rho_s^{theory} \sim V_i^{1.4} I_L^{0.13} \alpha_{if}^{-1.2}$ ρmax $\rho_{\text{max}}^{\text{fit}} = \frac{792}{\alpha_{\text{if}}} \mathbf{I}_{15}^{0.13} \left[\frac{\mathbf{V}_{i} (\text{cm/s})}{3 \cdot 10^{7}} \right]$

High-gain fuel assemblies for fast ignition can be designed using the scaling formulas

→ Low adiabats enhance densities and areal densities: minimum practical adiabat α = 0.7 to 0.8

$$\rightarrow \rho \mathbf{R}(\alpha = \mathbf{0.7}) \approx \mathbf{3} \Rightarrow \mathbf{E}_{\mathsf{Laser}} \approx \mathbf{750} \ \mathsf{kJ}$$

→
$$\rho_{max}(\alpha = 0.7) \approx 600 \text{ g/cc} \Rightarrow V_i(\text{cm/s}) \approx 1.7 \cdot 10^7 \text{ cm/s}$$

$$\rightarrow$$
 V_i \approx 1.7 • 10⁷ cm/s \Rightarrow R_h/ Δ _s \sim 1

High-gain FI target: $E_L = 750 \text{ kJ}, \alpha = 0.7, V_i \approx 1.7 \cdot 10^7 \text{ cm/s}$

Estimated yield ~ 120 MJ

In-flight aspect ratio (**IFAR**) = **18**

UR 🔌

For a fixed minimum adiabat and fixed peak density, the gain (without PW) depends only on the driver energy

 $\xi =$ fraction of $(\rho R)_{max}$ available for burn

A high-yield target has been designed for a 750-kJ laser driver

Using the relaxation-type laser pulse leads to improved hydrostability and a lower laser–power contrast ratio

R. Betti et al., Phys. Plasmas 12, 042703 (2005).

The 750-kJ capsule is driven by a relaxation laser pulse with a 22-ns main pulse and a contrast ratio of 150

Can NIF assemble high-gain FI targets? Indirect-drive pulse is 18 ns with a contrast ratio of ~100

The 750-kJ capsule yields a hot-spot volume < 8% of the compressed volume and a quasi-isochoric density profile

UR

The slow implosion velocity leads to negligible Rayleigh–Taylor growth during the laser flat top

V. N. Goncharov *et al.*, Phys. Plasmas <u>7</u>, 2062 (2000). S. W. Haam, Phys. Rev. A 39, 5812 (1989).

2-D hydro-simulations of ignition and burn of the 750-kJ target show energy yields >100 MJ

The relatively cold hot spot of such fuel assemblies can also be ignited by a spherically convergent shock*

^{*}C. Zhou, this conference.

A 25-kJ driver can assemble fuel for fast ignition using low-adiabat implosions of thick shells with a pulse compatible with the OMEGA Laser System

The 130- μ m capsule is driven by a relaxation laser pulse within the capabilities of the OMEGA laser

UR LLE

24 20 8 Main pulse length = 3.5 ns 6 16 **Prepulse width = 70 ps** Power (TW) 4 **Prepulse/main = 0.4** 2 12 Main contrast ratio = 320 0.10 0.00 0.05 Pulse energy = 25 kJ 8 Peak power = 20 TW 4 0 2 6 Ω

Time (ns)

The 130- μ m, α = 1, OMEGA-compatible capsule yields a density > 300 g/cc over a ρ R > 0.4 g/cm² and a hot-spot volume < 20% of the total volume

UR 🔌

This method for assemblying FI fuel will be first tested on OMEGA with surrogate plastic-shell implosions

Energy	α	Implosion velocity	Maximum ρR (5–15 atm)	Maximum ρ (5–15 atm)	Proton yield (5–15 atm)
20 kJ	1.2	2.1 • 10 ⁷ cm/s	0.5–0.36 g/cm ²	276–190 g/cc	1.2–2.3 • 10 ⁸

Summary/Conclusions

Significant progress has been made in the design of the fuel assembly for fast ignition using low-adiabat low-velocity implosions

- A high-yield fuel assembly has been designed; it requires a 750-kJ driver to produce
 - $\rho \mathbf{R} \simeq \mathbf{3} \ \mathbf{g/cm^2}$
 - 300 < ρ < 500 g/cc
 - hot-spot volume/total volume ~5% to 7%
 - estimated yield ~120 MJ (if ignited)
- A 25-kJ capsule can be assembled on the OMEGA laser to achieve
 - ρ R \simeq 0.8 g/cm², 300 < ρ < 500 g/cc
 - hot-spot volume/total volume <15%</p>
- Planned plastic–shell implosion experiments on OMEGA are expected to achieve $\rho R \simeq 0.3-0.5 \text{ g/cm}^2$ and $\rho \simeq 200-300 \text{ g/cc}$.

