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Significant progress has been made in the design 
of the fuel assembly for fast ignition using  
low-adiabat low-velocity implosions

TC7084a

•	 A high-yield fuel assembly has been designed;  
it requires a 750-kJ driver to produce

–	 ρR – 3 g/cm2

–	 300 < ρ < 500 g/cc

–	 hot-spot volume/total volume ~5% to 7%

–	 estimated yield ~120 MJ (if ignited)

•	 A 25-kJ capsule can be assembled on the OMEGA laser to achieve

–	 ρR – 0.8 g/cm2, 300 < ρ < 500 g/cc

–	 hot-spot volume/total volume <15%

•	 Planned plastic–shell implosion experiments on OMEGA are 
expected to achieve ρR – 0.3–0.5 g/cm2 and ρ – 200–300 g/cc.
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Ignition with fast ignition requires a fuel assembly  
with densities of 500 > r > 300 g/cc, rR > 0.4 g/cm2  
and small hot-spot volume

TC7068

S. Atzeni, Phys. Plasmas 6, 3316 (1999).
C. K. Li and R. D. Petrasso, Phys. Rev. E. 70, 067401 (2004).
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High yields with fast ignition require r > 300 g/cc,
rR ~3 g/cm2, small hot-spot volume, and gains > 100 
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Scaling laws relating stagnation to in-flight hydro-
variables are derived from conservation equations 

TC7080 R. Betti and C. Zhou, Phys. Plasmas (in press). 

~ ~
R A

M

R V A

E

i
s s

h s

sh

h s

K
2 2 2ρ D
R R_ _i i

~E P RK s h s
3+D_ i

~ Mach /
s if if

2 3a a

As ≡ Rh/Ds    ← Stagnation aspect ratio

Σ(x) ≡ 1 + 1/x + 1/(3x2)  ← Volume factor

(1) Mass →

(2) Energy →

(3) Entropy →

Unknowns → Ps, rs, As, Ds

Ds

Rh
rs

Ps

r

aif ≡ in-flight adiabat



Simulations of optimized implosions (max rR and r) 
yield a scaling relation for the stagnation aspect ratio

TC7017
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The areal density is weakly dependent on velocity;  
it increases for lower adiabats and greater energies
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The density is independent of energy; it increases
with the velocity and decreases with the adiabat
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High-gain fuel assemblies for fast ignition  
can be designed using the scaling formulas 

TC7072a

→	 Low adiabats enhance densities and areal densities:
	 minimum practical adiabat a = 0.7 to 0.8

→	r R(a = 0.7) ≈ 3 ⇒ ELaser ≈ 750 kJ

→	r max(a = 0.7) ≈ 600 g/cc ⇒ Vi(cm/s) ≈ 1.7 • 107 cm/s

→	 Vi ≈ 1.7 • 107 cm/s ⇒ Rh/Ds ~ 1

High-gain FI target: EL = 750 kJ, a = 0.7, Vi ≈ 1.7 • 107 cm/s

Estimated yield ~ 120 MJ

In-flight aspect ratio (IFAR) = 18

R. Betti and C. Zhou, Phys. Plasmas (in press). 



For a fixed minimum adiabat and fixed peak density, the 
gain (without PW) depends only on the driver energy
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A high-yield target has been designed 
for a 750-kJ laser driver

TC7018

Energy Implosion 
velocity a IFAR

750 kJ 1.7 • 107 cm/s 0.7 18

Maximum
averaged
density

Peak  
Density Maximum ρR

550 g/cc 670 g/cc 3 g/cm2

μ

μ

μ

μ



Using the relaxation-type laser pulse leads to improved
hydrostability and a lower laser–power contrast ratio

TC7081a

Standard flat-adiabat pulse

R. Betti et al., Phys. Plasmas 12, 042703 (2005).
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The 750-kJ capsule is driven by a relaxation laser pulse
with a 22-ns main pulse and a contrast ratio of 150 

TC7019

Can NIF assemble high-gain FI targets? 
Indirect-drive pulse is 18 ns with a contrast ratio of ~100



The 750-kJ capsule yields a hot-spot volume < 8% 
of the compressed volume and a quasi-isochoric 
density profile

TC7074
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The slow implosion velocity leads to negligible 
Rayleigh–Taylor growth during the laser flat top

TC7083

Results from RT 
postprocessor based 
on Haan–Goncharov 
models and NIF laser 
nonuniformities with 
1-THz SSD.

V. N. Goncharov et al., Phys. Plasmas 7, 2062 (2000).
S. W. Haam, Phys. Rev. A 39, 5812 (1989).



2-D hydro-simulations of ignition and burn
of the 750-kJ target show energy yields >100 MJ

TC7282 *J. A. Delettrez, this conference

n

n

Total beam energy (kJ) 12–20

e-beam radius (nm) 20

Electron energy (MeV) 2–3

Energy yield ≈ 116 MJ



The relatively cold hot spot of such fuel assemblies can 
also be ignited by a spherically convergent shock*

TC7257

250-kJ shock

750-kJ fuel assembly

Target yield from 1-D 
hydro-simulation: 118 MJ
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A 25-kJ driver can assemble fuel for fast ignition
using low-adiabat implosions of thick shells with
a pulse compatible with the OMEGA Laser System

TC7075a

Energy IFAR a

25 kJ 30 1

Implosion  
velocity

Maximum 
density

Maximum 
ρR

2.6 • 107 cm/s 700 g/cc 0.8 g/cm2

μ

μ

μ

μ



The 130-mm capsule is driven by a relaxation laser pulse 
within the capabilities of the OMEGA laser

TC7077

Main pulse length = 3.5 ns

Prepulse width = 70 ps

Prepulse/main = 0.4

Main contrast ratio = 32

Pulse energy = 25 kJ

Peak power = 20 TW



The 130-μm, α = 1, OMEGA-compatible capsule
yields a density > 300 g/cc over a ρR > 0.4 g/cm2

and a hot-spot volume < 20% of the total volume

TC7076
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This method for assemblying FI fuel will be first tested 
on OMEGA with surrogate plastic-shell implosions

μ

μ

Energy a Implosion
velocity

Maximum rR  
(5–15 atm)

Maximum r  
(5–15 atm)

Proton yield
(5–15 atm)

20 kJ  1.2  2.1 • 107 cm/s 0.5–0.36 g/cm2 276–190 g/cc 1.2–2.3 • 108

TC7082a



Significant progress has been made in the design 
of the fuel assembly for fast ignition using  
low-adiabat low-velocity implosions

TC7084a

•	 A high-yield fuel assembly has been designed;  
it requires a 750-kJ driver to produce

–	 ρR – 3 g/cm2

–	 300 < ρ < 500 g/cc

–	 hot-spot volume/total volume ~5% to 7%

–	 estimated yield ~120 MJ (if ignited)

•	 A 25-kJ capsule can be assembled on the OMEGA laser to achieve

–	 ρR – 0.8 g/cm2, 300 < ρ < 500 g/cc

–	 hot-spot volume/total volume <15%

•	 Planned plastic–shell implosion experiments on OMEGA are 
expected to achieve ρR – 0.3–0.5 g/cm2 and ρ – 200–300 g/cc.

Summary/Conclusions
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