Asymptotic Bubble Evolution in the Bell–Plesset and Rayleigh–Taylor Instabilities

C. Zhou, R. Betti, and J. Sanz University of Rochester Laboratory for Laser Energetics

 $\lambda/2$

46th Annual Meeting of the American Physical Society Division of Plasma Physics Savannah, GA 15–19 November 2004

Summary

The asymptotic bubble evolution for the ablative-RT and BP instabilities is studied using Layzer-like models and simulations

- In the ablative Rayleigh–Taylor instability, the asymptotic bubble velocity is higher than the classical value.
- The bubble velocity in the incompressible Bell–Plesset instability exhibits a bifurcated solution
 - The bubble "expands" and "accelerates" when the initial amplitude is below a critical value.

UR 🔌

- The bubble "compresses" and "freezes" when the initial amplitude is above a critical value.

The nonlinear theory of Sanz *et al.* predicts that the asymptotic bubble velocity is classical

- A fully developed bubble is cold; ablation is negligible in the bubble. The bubble motion is governed by the balance between the drag and the buoyancy forces.
- The theory* predicts that the asymptotic bubble penetration velocity (i.e., the velocity relative to the overdense material) is classical

 $V_{bubble} = \sqrt{g/3k} \approx 0.1 \lambda \gamma_{classical}$

• Heuristic formula^{**} underestimates the bubble penetration velocity at short wavelengths, where $\gamma_{classical} >> \gamma_{ablative}$

 $\label{eq:value} \begin{array}{l} \textbf{V}_{\mbox{bubble}}^{\mbox{heuristic}} \approx \textbf{0.1} \; \lambda \gamma_{\mbox{ablative}} + \textbf{V}_{\mbox{a}} \\ \end{array}$

UR

^{*}J. Sanz, et al., Phys. Rev. Lett., <u>89</u>, 195002 (2002). **Single-mode application of S. W. Haan, Phys. Rev. A, Gen. Phys. 39, 5812 (1989).

The bubble velocity relative to the overdense target material (i.e., the penetration velocity) is greater than classical

UR LLE

A pedestal forms in the density profile and the bubble is classical with no ablation inside

A large vortex forms inside the bubble; the vorticity convected from the tip of the spike accumulates inside the bubble

UR 🔌

Ablated material with finite vorticity fills the bubble; vorticity inside the bubble grows in time

Asymptotic bubble velocity if higher than the classical value due to the vorticity accumulated inside the bubble

The asymptotic bubble velocity is also calculated for the Bell–Plesset instability; a Layzer model for the BP is developed

Two coupled differential equations are derived for the bubble position (ξ) and bubble curvature (η).

$$\gamma_{\rho}\xi^{2}\left[(3\ell+2)\eta+\ell^{2}\xi\right]+2\ell(3\eta+\ell\xi)\left(R\dot{R}-\xi\dot{\xi}\right)-2\xi\frac{d\xi\eta}{dt}=0$$

$$\begin{split} \ell^2 \gamma_\rho^2 \xi^4 + 4 \ell^2 \gamma_\rho \xi^2 \left(R\dot{R} - \xi \dot{\xi} \right) &- 2 \ell \xi^2 \frac{d \gamma_\rho \xi^2}{dt} \\ &+ 4 \ell^2 \left(R\dot{R} - \xi \dot{\xi} \right)^2 - 4 \ell \xi^2 \frac{d}{dt} \left(R\dot{R} - \xi \dot{\xi} \right) + 4 \eta \xi^2 \ddot{\xi} = 0 \end{split}$$

- ℓ is the wave number
- R(t) is the inner radius
- Bubble amplitude $\Delta = \xi R$
- $\gamma_{\rho} = \dot{\rho} / \rho$ is the compressibility; take $\gamma_{\rho} = 0$

The BP nonlinear bubble velocity may temporarily exceed its linear value but asymptotically falls below linear

A bifurcated solution develops when the initial amplitude exceeds a critical value

Criterion for bifurcation of the solution depends on initial conditions of the perturbation

Bifurcation criterion for initial sinusoidal perturbation

$$\tilde{\Delta}/R_0 = 1.32/\ell^{1.1}$$

Bubble freezes, velocity saturates before full convergence.

Bubble expands, velocity increases until full convergence.

The asymptotic bubble evolution for the ablative-RT and BP instabilities is studied using Layzer-like models and simulations

- In the ablative Rayleigh–Taylor instability, the asymptotic bubble velocity is higher than the classical value.
- The RT bubble acceleration above classical is caused by the vorticity accumulation inside the bubble.

- The bubble velocity in the incompressible Bell–Plesset instability exhibits a bifurcated solution
 - The bubble "expands" and "accelerates" when the initial amplitude is below a critical value.
 - The bubble "compresses" and "freezes" when the initial amplitude is above a critical value.