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The asymptotic bubble evolution for the ablative-RT
and BP instabilities is studied using Layzer-like models
and simulations

• In the ablative Rayleigh–Taylor instability, the asymptotic bubble
velocity is higher than the classical value.

• The bubble velocity in the incompressible Bell–Plesset instability
exhibits a bifurcated solution

– The bubble “expands” and “accelerates” when the initial amplitude
is below a critical value.

– The bubble “compresses” and “freezes” when the initial amplitude
is above a critical value.

Summary
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The nonlinear theory of Sanz et al. predicts
that the asymptotic bubble velocity is classical

*J. Sanz, et al., Phys. Rev. Lett., 89, 195002 (2002).
**Single-mode application of S. W. Haan, Phys.
   Rev. A, Gen. Phys. 39, 5812 (1989).

• A fully developed bubble is cold; ablation is negligible in the bubble.
The bubble motion is governed by the balance between the drag and
the buoyancy forces.

• The theory* predicts that the asymptotic bubble penetration velocity
(i.e., the velocity relative to the overdense material) is classical

Vbubble = g 3k ≈ 0.1 λγclassical

• Heuristic formula** underestimates the bubble penetration velocity
at short wavelengths, where γclassical >> γablative

Vbubble
heuristic ≈ 0.1 λγablative +Va
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The bubble velocity relative to the overdense target material
(i.e., the penetration velocity) is greater than classical

Vclassical =
g
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A pedestal forms in the density profile and the bubble
is classical with no ablation inside
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A large vortex forms inside the bubble; the vorticity
convected from the tip of the spike accumulates
inside the bubble
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Ablated material with finite vorticity fills the bubble;
vorticity inside the bubble grows in time
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Asymptotic bubble velocity if higher than the classical
value due to the vorticity accumulated inside the bubble

Vbubble
vort = g
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4
Centrifugal force

ρh − ρl( )gBuoyancy force

Centrifugal force
and buoyancy
force add up

Ω = ω/2

R ~ λ/2

Ω = angular
frequency

ω = vorticity
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The asymptotic bubble velocity is also calculated
for the Bell–Plesset instability; a Layzer model
for the BP is developed

• Two coupled differential equations are derived for the bubble
position (ξ) and bubble curvature (η).

• � is the wave number
• R(t) is the inner radius
• Bubble amplitude ∆ = ξ – R
•              is the compressibility; take γρ = 0ργρ = � ρ

Rγρξ2 3�+2( )η+ �2ξ⎡
⎣

⎤
⎦+2� 3η+ �ξ( ) R � − ξ�ξ( )− 2ξ dξη

dt
= 0

�2γρ
2ξ4 +4�2γρξ2 R �R− ξ�ξ( )− 2�ξ2 dγρξ2

dt

+4�2 R �R− ξ�ξ( )2 − 4�ξ2 d
dt

R �R− ξ�ξ( )+4ηξ2��ξ = 0
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The BP nonlinear bubble velocity may temporarily exceed
its linear value but asymptotically falls below linear
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A bifurcated solution develops when
the initial amplitude exceeds a critical value
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Criterion for bifurcation of the solution depends
on initial conditions of the perturbation

Bifurcation criterion for initial sinusoidal perturbation

�∆ R0 =1.32 �1.1

∆0 > �∆ Bubble freezes, velocity saturates before full convergence.

∆0 < �∆ Bubble expands, velocity increases until full convergence.
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The asymptotic bubble evolution for the ablative-RT
and BP instabilities is studied using Layzer-like models
and simulations

• In the ablative Rayleigh–Taylor instability, the asymptotic bubble
velocity is higher than the classical value.

• The RT bubble acceleration above classical is caused by the vorticity
accumulation inside the bubble.

• The bubble velocity in the incompressible Bell–Plesset instability
exhibits a bifurcated solution

– The bubble “expands” and “accelerates” when the initial amplitude
is below a critical value.

– The bubble “compresses” and “freezes” when the initial amplitude
is above a critical value.

Summary/Conclusions


