The Effect of Incidence Angle on Laser-Driven Shock Strengths

T. R. Boehly, R. S. Craxton, V. Goncharov, J. E. Miller, I. V. Igumenshchev, R. Betti, K. Anderson, D. D. Meyerhofer, and T. C. Sangster

> Laboratory for Laser Energetics University of Rochester

D. G. Hicks, P. M. Celliers

Lawrence Livermore National Laboratory, Livermore, CA

Summary

Double-pulse experiments demonstrate that 1-D simulations with ray tracing can model the effects of oblique incidence

- Angular dependence of laser-target coupling efficiency is important for planar and polar direct drive experiments.
- Shock strength is used as a measure for coupling efficiency by inferring pressure from the measured velocity profiles.
- Ray trace routines in one-dimensional simulations provide a good measure of angular effects.
- For short pulses, 3-D effects and lateral heat transport appear to be small.

Motivation

Planar and polar-direct-drive experiments require modeling of oblique angles of incidence

Planar experiments can involve spherical plasmas.

Polar direct drive uses nonradial drive beams.

UR

Shock timing and coupling efficiency are studied with two pulses and different angles

Planar experiments are affected by oblique incidence and edge effects

- 1-D simulations with ray-trace routines treat
 - changes in spot size and shape and
 - refraction of oblique rays altering the turning point.
- Effects not included are
 - additional loss due to refraction from 3-D plasmas and
 - lateral heat flow.
- Experiments indicate that for short pulses, the latter are small.

One-dimensional simulations with ray tracing model the experiements well

These types of experiments are used to study coupling efficiency.

32216 32213-16 35143, 35790 E13385

The velocity profiles are used to infer initial conditions

An analytic model¹ can be used to infer initial pressure from a measured velocity profile

The analytic model is fit to the experimental and simulated velocity profiles

Peak pressures inferred from the velocity profiles demonstrate the effect of incidence angle on coupling efficiency

LLE

40 **23° (6 beams)** 30 Pressure (Mbar) $\mathbf{P} = \mathbf{P}_0 \mathbf{l}^{0.6}$ 20 **48°** 10 **62° (9 beams)** 0 2 3 4 5 6 7 1 0 Intensity (10¹⁴ W/cm²)

32207, 32210, 32213-16, 34914, 31543, 35790 E13391 • Intensity is corrected for obliquity (cos θ).

Pressures from simulations show good agreement with inferred experimental peak pressures

P versus intensity Δ Simulation **Experiment** Pressure (Mbar) ° ° 62° Intensity (10¹⁴ W/cm²)

• Discrepancies are likely due to high-order effects.

Double-pulse experiments demonstrate that 1-D simulations with ray tracing can model the effects of oblique incidence

- Angular dependence of laser-target coupling efficiency is important for planar and polar direct drive experiments.
- Shock strength is used as a measure for coupling efficiency by inferring pressure from the measured velocity profiles.
- Ray trace routines in one-dimensional simulations provide a good measure of angular effects.
- For short pulses, 3-D effects and lateral heat transport appear to be small.

Measured velocity profiles are used to discern between flux limiters

UR LLE