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The 100-TW laser backlighter experiment yields
~40 µJ/eV/ps at 1.6 keV photon energy

• A peak spectral energy density of ~4 mJ/eV is measured for thermal
aluminum K-shell emission assuming isotropic emission.

• Emission times of ~100 ps are estimated by comparing the
simulated brilliance with the measurements for a fixed source area.

• Spectral power densities of ~800 µJ/eV/ps at 2 keV are required for
backlighting cryogenic implosion targets.  The brightness needs to
be increased by a factor of ~20.

• Electron temperatures and densities of up to Te ~ 400 eV and
Ne ~ 8 × 1022 cm–3, respectively, are estimated.

Summary
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Backlighting of cryogenic implosion targets requires
spectral bright, ultrashort x-ray flashes

• Simulations show that a backlighter spectral brightness of ~ 800 µJ/eV/ps
at 2 keV has to be achieved in order to overcome the target self-emission.

• The photon energy of 2 keV allow optimum imaging contrast for a
T = 1 keV, ρr = 200 mg/cm2 core at stagnation.

• A minimum gating time of 20 ps is considered to minimize
the contribution by target self-emission.

• High-power, high-energy beams from OMEGA EP will be used
for backlighting OMEGA cryogenic target implosions:

Intensity range: 1016 to 1018 W/cm2

Laser pulse duration: 10 ps

Pulse energy: 2.6 kJ
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Flag targets were irradiated
with the 100-TW laser

• Pulse energy: ~100 J

• Pulse duration: 1 ps to several ps

• Laser wavelength: 1.053 µm

• Focus diameter (f/3 parabola):
~ 10 µm

• Normal incidence

• Shot 0406031: ~ 1017 W/cm2

• Shot 0406045: ~ 1019 W/cm2
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A dual channel, flat-crystal spectrograph with a single
hit x-ray ccd camera records the Al K-shell emission
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See also: C. Stoeckl (EO1.012)
J. Kuba (EO1.008)
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A strong increase in the Al H-like K-shell emission
is observed with increased laser intensity

Shot 0406031 ~ 1017 W/cm2
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The measurement yields peak spectral
energy densities of 4 mJ/eV at 1.6 keV

Shot 0406045
Shot 0406031
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The thermal aluminum K-shell emission was compared
to simulations of the program PrismSPECT*
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* J. J. MacFarlane, et al., Prism Computational Sciences, Madison, WI 53711

• The estimated temporally and spatially averaged electron temperature
and density are ~300 eV and ne = 3 × 1021 cm–3, respectively.
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The analysis of Shot 0406045 yields a density increase
by a factor of ~30 and a slightly higher temperature

• An average temperature of ~400 eV and a density of
ne = 8 × 1022 cm–3 are estimated.

• Similar plasma parameters were obtained with buried
Al layers in PW laser experiments*.
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*J. Koch et al., Phys. Rev. E 65, 016410 (2001).
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The comparison of the calculated brilliance
with the measurement indicates emission times
on the order of ~100 ps

• Brilliance:

• For Shot 04046031, the source area
is known (foil size) ⇒ an emission
time of ~100 ps is estimated.

• Aluminum K-shell emission times
of 70 ps were measured in PW laser
irradiated solid target experiments*.

• Emission times in the 2 keV range
need to be measured with a streaked
x-ray spectrograph.
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The 100-TW laser backlighter experiment yields
~40 µJ/eV/ps at 1.6 keV photon energy

• A peak spectral energy density of ~4 mJ/eV is measured for thermal
aluminum K-shell emission assuming isotropic emission.

• Emission times of ~100 ps are estimated by comparing the
simulated brilliance with the measurements for a fixed source area.

• Spectral power densities of ~800 µJ/eV/ps at 2 keV are required for
backlighting cryogenic implosion targets.  The brightness needs to
be increased by a factor of ~20.

• Electron temperatures and densities of up to Te ~ 400 eV and
Ne ~ 8 × 1022 cm–3, respectively, are estimated.

Summary/Conclusions
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A backlighter spectral power density of 800 µJ/eV/ps
in the 2 keV spectral range is required for imaging

• Simulations predict a self-emission of 100 µJ/eV/ps into 4π in the 2 keV range.

• The simulation assumes, for the backlighter, a 3 keV Planckian spectrum filtered
in the 2 to 2.2 keV spectral range.
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