Absorption Measurements in Spherical Implosions on OMEGA

W. Seka University of Rochester Laboratory for Laser Energetics 46th Annual Meeting of the American Physical Society Division of Plasma Physics Savannah, GA 15–19 November 2004

Contributors

- C. Stöckl
- R. E. Bahr
- T. C. Sangster
- **R. S. Craxton**
- J. A. Delettrez
- V. Goncharov
 - R. L. Short
 - A. Simon

Experimental absorption measurements agree within ~6% rms (~2% SEM) with simulations for cryogenic target shots with various pulse shapes

- Absorption measurements are used for calibrating hydrocode simulations.
- Measured and simulated absorption agree less well for warm plastic shell targets and some strongly shaped pulses.
- There is some evidence for stimulated Brillouin scattering (SBS) in the scattered light spectra (energetically unimportant).

Motivation

Accurate knowledge of absorbed laser power is essential for hydrodynamic simulations

- Hydrodynamic codes need to be calibrated against a multitude of experimental data (e.g., absorption, neutron "bang" time, shock timing, etc.).
- Hydrocodes model linear absorption and refraction.
 - If nonlinear interaction processes are affecting our data, we need to identify the sources and assess their importance.
 - Electron transport model in the codes may influence absorption.

Accurate absorption measurements require careful analysis of intrinsic sources of errors

- Scattered light measurements
 - All 60 beams contribute to the signal collected at any location around the target chamber.
 - Light scattered from other diagnostics can lead to double counting of scattered light contributions.
 - Full-aperture backscatter stations (FABS) are sensitive to blow-by around the target.
- Plasma calorimeters
 - Absolute calibration is difficult.
 - Secondary plasma blow-off from nearby diagnostics can influence measurements.

Experimental Details

Photographs of imploding targets using scattered UV light allow identification of all 60 beams

Beams near Beams opposing view port. view port

Photographs taken from off center location

A large number of cryogenic D₂ implosions have been diagnosed over the past 18 months

Absorption measurements for cryogenic D₂ shots agree well with *LILAC* predictions for all pulse shapes

Measured and predicted absorption for cryogenic D_2 implosions lie within 6% rms (= 2% SEM) for all pulse shapes

• Cryogenic D₂ target shots between shot numbers 32129 and 37228

The measured scattered power histories for cryo shots and complex pulse shapes agree well with *LILAC* predictions

Absorption measurments for warm implosion shots agree well with *LILAC* predictions for 1-ns pulse shapes

For shaped long pulses *LILAC* overpredicts the absorption

• Target: 860-µm foam shell 60-beam implosion

Time-resolved spectroscopy shows corona formation, start of target implosion, and nonlinear interaction effects

Time-resolved spectroscopy shows corona formation, start of target implosion, and nonlinear interaction effects

• Target: 940-µm CH shell; 60-beam implosion

Time-resolved spectroscopy shows corona formation, start of target implosion, and nonlinear interaction effects

• Target: 940-μm CH shell; 60-beam implosion

Time resolved spectroscopy shows corona formation, start of target implosion, and nonlinear interaction effects

For 1-ns square-top pulses, the 1-D LILAC hydrodynamic simulations agree very well with the scattered light measurements.

• Target: 940-µm CH shell; 60 beam-implosion

For cryo shots, the measured scattered power histories agree well with *LILAC* for pulse shapes

Summary/Conclusions

Experimental absorption measurements agree within ~6% rms (~2% SEM) with simulations for cryogenic target shots with various pulse shapes

- Absorption measurements are used for calibrating hydrocode simulations.
- Measured and simulated absorption agree less well for warm plastic shell targets and some strongly shaped pulses.
- There is some evidence for stimulated Brillouin scattering (SBS) in the scattered light spectra (energetically unimportant).