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Summary

• "Surrogate" fuels with advantageous nuclear properties (such as 
D2 or D3He for DT) are often used to study implosion dynamics

• Interpretation of surrogate implosions typically assumes that fuels 
can be interchanged with minimal impact on implosion 
hydrodynamics

• An investigation of hydrodynamic equivalence using different fill 
compositions was carried out using a mixture of D2 and 3He

• The experimental yield scaling was found to deviate from that 
expected assuming hydrodynamic equivalence



Hydrodynamically equivalent fills have the same 
total number of particles (e + i) on full ionization
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The mass density is the same for all such mixtures

Fill pressures for different fill compositions are 
chosen such that there are the same total 
number of particles (e + i) when the gas is 
completely ionized.

For D2(X)3He(Y) filled capsules, hydro-
equivalence to a D2(15) capsule requires:

Driven with a 23 kJ,
1 ns square pulse



Yields from two nuclear reactions are used to 
diagnose such implosions
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For hydrodynamically-equivalent implosions,
DD-n yield scales as the square of D2 fill pressure
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Yields have been normalized to the fill composition

DD-n Yield (norm)
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Experimental yields deviate from the expected 
"hydro-equivalent" yield scaling
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1D simulations also deviate from the
expected "hydro-equivalent" yield scaling
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Experimental D3He yields also deviate from the
expected "hydro-equivalent" yield scaling
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These yield trends are not due to differences in
DD-n burn-averaged ion temperature
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The observed yield trends could be due to
higher convergence for D-rich fill
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A simple density calculation to 
explain yield trends:

ρD2 = 1.25 ρD3He

…implies a higher convergence for 
pure D2 fills over 1 to 1 D3He fills:

Cr,D2 = 1.08 Cr,D3He



1D simulations suggest that shock "preheating"
leads to lower convergence for lower D2 fraction
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1D simulations suggest that shock "preheating"
leads to lower convergence for lower D2 fraction
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Nuclear measurements are a sensitive probe of
hydrodynamic equivalence

• An investigation of hydrodynamic equivalence using different fill 
compositions was carried out using a mixture of D2 and 3He

• Observed trends of DD-n and D3He yields differed significantly 
from those anticipated based on hydrodynamic-equivalence and 
on 1-D simulations

• The yield trends are not caused by a trend in ion temperature

• An 8% difference in the convergence ratio is sufficient to explain 
the experimental yield scaling
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