Testing Hydrodynamic Equivalence of D₂ and ³He mixtures

J.R. Rygg et al. MIT - PSFC 46th American Physical Society DPP Meeting Savannah, GA, Nov 15-19, 2004

J.L. DeCiantis, J.A. Frenje, C.K. Li, F.H. Séguin, and R.D. Petrasso

Plasma Science and Fusion Center Massachusetts Institute of Technology

J.A. Delettrez, S.P. Regan, V.Yu Glebov, V.N. Goncharov, J.P. Knauer, D.D. Meyerhofer, P.B. Radha, T.C. Sangster Laboratory for Laser Energetics University of Rochester

J.R. Rygg et al. MIT - PSFC 46th American Physical Society DPP Meeting Savannah, GA, Nov 15-19, 2004

- "Surrogate" fuels with advantageous nuclear properties (such as D₂ or D³He for DT) are often used to study implosion dynamics
- Interpretation of surrogate implosions typically assumes that fuels can be interchanged with minimal impact on implosion hydrodynamics
- An investigation of hydrodynamic equivalence using different fill compositions was carried out using a mixture of D₂ and ³He
- The experimental yield scaling was found to deviate from that expected assuming hydrodynamic equivalence

Hydrodynamically equivalent fills have the same total number of particles (e + i) on full ionization

Fill pressures for different fill compositions are chosen such that there are the same total number of particles (e + i) when the gas is completely ionized.

For $D_2(X)^3$ He(Y) filled capsules, hydroequivalence to a $D_2(15)$ capsule requires:

$$\frac{X}{15atm} + \frac{Y}{20atm} = 1$$

The mass density is the same for all such mixtures

Yields from two nuclear reactions are used to diagnose such implosions

For hydrodynamically-equivalent implosions, DD-n yield scales as the square of D₂ fill pressure

DD-n Yield

Yields have been normalized to the fill composition

Experimental yields deviate from the expected "hydro-equivalent" yield scaling

 $Y_{norm} = Y_{DDn} (15 \text{ atm}/X)^2$ 2.4 10¹¹ hydro-equiv experimental N = 5 N = 68 1.6 10¹¹ ₹ ቅ DDn D₂(6)³He(12) **Yield** D₂(15) 8 10¹⁰ N = 480 0 0.5 1 d frac by atom

DD-n Yield (norm)

1D simulations also deviate from the expected "hydro-equivalent" yield scaling

DD-n Yield (norm)

 $Y_{norm} = Y_{DDn} (15 \text{ atm}/X)^2$ 2.4 10¹¹ hydro-equiv lilac (norm) experimental 1.6 10¹¹ Ŧ **Ŧ** DDn **Yield** 8 10¹⁰ 0 0 0.5 1 d frac by atom

Experimental D³He yields also deviate from the expected "hydro-equivalent" yield scaling

These yield trends are not due to differences in DD-n burn-averaged ion temperature

The observed yield trends could be due to higher convergence for D-rich fill

DD-n Yield (norm)

A simple density calculation to explain yield trends:

$$p_{D2} = 1.25 \ \rho_{D3He}$$

...implies a higher convergence for pure D_2 fills over 1 to 1 D^3 He fills:

 $C_{r,D2}$ = 1.08 $C_{r,D3He}$

1D simulations suggest that shock "preheating" leads to lower convergence for lower D₂ fraction

1D simulations suggest that shock "preheating" leads to lower convergence for lower D₂ fraction

Nuclear measurements are a sensitive probe of hydrodynamic equivalence

- An investigation of hydrodynamic equivalence using different fill compositions was carried out using a mixture of D₂ and ³He
- Observed trends of DD-n and D³He yields differed significantly from those anticipated based on hydrodynamic-equivalence and on 1-D simulations
- The yield trends are not caused by a trend in ion temperature
- An 8% difference in the convergence ratio is sufficient to explain the experimental yield scaling