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2-D simulations of high-adiabat plastic shell implosions
on OMEGA are in good agreement with experiment

Summary

• Excellent agreement on laser energy absorption is obtained
between experiment and simulation.

• Single-beam nonuniformity significantly influences fusion yields
for “thin” (≤20 µm thick) shells through shell instability during
acceleration, in contrast to the thicker (≥27 µm thick) shells.

• Good agreement with experimentally observed neutron
production history, areal densities, and x-ray images of
self-emission is obtained with 2-D simulations.
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Outline

• Target, pulse shape, and experimental conditions

• Laser drive

• Nonuniformity seeds

• Effect of unstable growth on observables

• Comparison of 2-D simulations with experimental observables

– neutron production rates

– areal density

– ion temperature

– core x-ray images

• Estimates of turbulent mixing length
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A large number of warm plastic shells
have been imploded on OMEGA

• A variety of fills provides complementary information* on core conditions.

*Li et al., Phys. Plasmas 10, 1919 (2003).
*Smalyuk et al., Phys. Rev. Lett 90, 135002-1 (2003).
*Regan et al., Phys. Rev. Lett. 92, 185002 (2004).
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Most implosion observables occur during
deceleration, after significant growth during
all previous phases of the implosion

Simulation of 20-µm CH, 15 atm Shell

Plastic shell implosions provide a stringent
test of laser drive modeling, nonuniformity

sources, and implosion dynamics.
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The laser energy absorption model in hydrodynamic
simulations agrees well with measurements*

TC6671
*W. Seka, HO1.009

Laser Drive

Absorption Fraction for 1ns-Square Pulse on CH Shells
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Irradiation and target nonuniformities are seeds
for unstable growth in ICF implosions

• Beam mispointing, mistiming, asymmetries in spot shapes, and
energy imbalance manifest in low-order (long wavelength) modes.

• Phase plate speckle results in intermediate and short wavelength
nonuniformity seeds.

Ablation Surface Amplitudes at the
Start of the Acceleration Phase

A
m

p
lit

u
d

e 
(µ

m
)

Mode number

10–2

0 42
10–4

6

10–3

8

10–1

10 12

Beam
imbalances

Surface
roughness

Single-beam nonuniformity
(laser imprint)

Long
wavelengths

Mode number
0 10050 150 200

A
m

p
lit

u
d

e 
(µ

m
)

10–2

10–4

10–3

Short
Intermediate

Nonuniformity Seeds



TC6588

Two extremes of shell stability are probed
on OMEGA by varying the shell thickness
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“Broken” shells show a persistence of neutron
production due to undercompression
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Integral shells result in burn truncation due
to unstable fluid flow at the interface

Time

1-D

24 28 32 36

1

2

3

4

Distance (µm)

D
is

ta
n

ce
 (

µ
m

)

Single-mode simulation
showing fluid flow at interface Schematic of neutron rates

Tion (keV)

0.1

1.0

1.9

2.8

Truncated

• Mass flow into the bubbles is an important burn truncation mechanism.

N
eu

tr
o

n
 r

at
e

D2

CH

fuel—shell
interface



1.7

6.2

10.7

15.2

19.7

ρ(g/cc)

0 80604020

1-D interface

Distance (µm)
0 80604020

Distance (µm)

1-D
interface

D2 CH

Laser

0 200 400
Distance (µm)

TC6675

Undercompression is evident in broken shells
modeled in two-dimensions using DRACO

Nonuniformity seeds:
Laser imprint (� = 20 and 200)
Beam-beam imbalances (� = 4)

Peak Neutron Production
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Neutron production rates persist in the “thin” shell
simulations and truncate in the “thick” shell simulations
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Similar trends in neutron production rates
are observed experimentally
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Less stable, persistent neutron rate More stable, truncated neutron rate
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The lower fill pressure for the broken shell does
not show a widening of the neutron production rate
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Yields and areal densities from simulation show
good agreement with observations

*S. P. Regan, CO1.004
**Li et al., Phys Plasmas  7, 2578 (2000).
†J. Frenje, CO1.009
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The marginal effect of long and intermediate wavelengths for thin
shells is consistent with observations* using new phase plates

TC6856 *S. P. Regan, CO1.004

• Far field intensity envelope: I(r) ∝ exp

• New SG4: n = 4.1, δ = 360 µm

• Old SG3: n = 2.2, δ = 308 µm
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Limb brightening is significantly reduced in
2-D simulations, consistent with observations

*Post processed with Spect3D, PRISM Computational Sciences, Madison, WI
†S. P. Regan et. al., Phys. Plasmas 9, 1357 (2002).

20-µm, 15 atm

Gated Pinhole Camera
Images at ~4.5 keV (22546)†
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Amplitude of short wavelengths are consistent
with estimates from turbulent mixing

Turbulent mixing length
h ~ α ATgt2

α ~ 0.05*, AT = 0.18, gt2 = 120 µm
h ~ 1 µm ~ amplitude
of short wavelength

in simulation

*D. L. Youngs, Physica 12D, 32 (1984); U. Alan et al., Phys. Rev. Lett. 72, 2867 (1994);
  G. Dimonte, Phys. Plasmas 6, 2009 (1999).

Peak neutron production, 20µm–15atm
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Primary neutron yields are not influenced
by the turbulently mixed region

*Li et al., Phys. Rev. Lett.  89, 165002 (2002); P. B. Radha et al., Phys. Plasmas 9, 2208 (2002).
**S. P. Regan et al., Phys. Plasmas 9, 1357 (2002).
†D. Wilson et al., Phys. Plasmas 11, 2723 (2004).

• Secondary neutron rates*, Ar-K shell** spectra, and D3He
proton yields* from CD shells are sensitive to small-scale mix.
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2-D simulations of high-adiabat plastic shell implosions
on OMEGA are in good agreement with experiment

• Excellent agreement on laser energy absorption is obtained
between experiment and simulation.

• Single-beam nonuniformity significantly influences fusion yields
for “thin” (≤20 µm thick) shells through shell instability during
acceleration, in contrast to the thicker (≥27 µm thick) shells.

• Good agreement with experimentally observed neutron
production history, areal densities, and x-ray images of
self-emission is obtained with 2-D simulations.

Summary/Conclusions




