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• Transport efficiency in the FI scheme has been investigated numerically 
using the hybrid-implicit PIC code Lsp.1

– Unlike Monte Carlo, the effects of self-fields are included.

• Three-dimensional calculations of 1-MeV electron beams have been made
with parameters relevant to OMEGA EP imploded cyrogenic DT targets.

• Resistive filamentation of beam current plays a role for these parameters.

 – Finite collisionality between the cold-electron return current
and plasma ions leads to filamentation of the beam current and
emittance growth.

 – Subpicosecond growth times even for 1-keV DT plasma.

– Growth rate depends upon beam thermal spread (temperature).

1 D. R. Welch et al., Nucl. Instrum. Methods Phys. Res. A 464, 134 (2001).

Summary

We have determined the maximum allowable transport
distance to be no more than several tens of microns
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• In the transport region, the collisionless current filamentation instability
gives way to resistive filamentation.

• Collisionless Weibel 
suppressed for small 
nb/np

• Silva et al., (PoP 2004) 
conclude nb/np < 0.1 
sufficient for 10-keV beam

• Resistive filamentation:
α (η, βb, Tb, K, ωb)

• Validity of Ohm’s Law

Subpicosecond growth times for resistive filamentation
can be obtained, even for hydrogenic (Z = 1) plasma
at 1 keV
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Hybrid-implicit PIC (Lsp) is well suited to modeling
of the transport region and is able to correctly describe
resistive filamentation

• We have benchmarked the code against the linear theory.

• Scattering of cold return current with ions (finite resistivity) leads
to resistive filamentation; electron inertial helps for α � νei.
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We have evaluated transport efficiency for OMEGA EP
parameters as a function of beam temperature and
stand-off distance for the core

• OMEGA EP relevant parameters are chosen for the beam source:
nb ~ 1020, Ib ~ 2 MA, rG ~ 10 µm

• Transport efficiency is calculated by measuring the fractional
energy flux of hot electrons through the compressed shell/core.
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An initially well-collimated beam has a poor transport
efficiency due to the rapid onset of beam spraying

T = 0.4 ps T = 0.8 ps T = 1.25 ps T = 1.7 ps
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Beam temperatures greater than 100 keV suppress
filamentation, but have a significant initial divergence

T = 0.7 ps T = 1.0 ps T = 1.7 ps T = 3.3 ps
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Reasonable efficiencies can be obtained for stand-off
distances of �40 µm and moderate beam temperatures
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• The cold beam sees an order of magnitude improvement in efficiency.

• Geometric losses are smaller.

• The beam is weaker [(nb/np) smaller].

2040 –20 –40
0

50

100

150

200

y (µm)

z 
(µ

m
)

c
c/2

Fr
ac

ti
o

n
al

 fl
u

x 
th

ro
u

g
h

su
rf

ac
e 

c,
 c

/2

Tb = 10 keV
Tb = 200 keV

c

c

c/2

2040 –20 –40
y (µm)

c
c/2

nb (× 1020)(cm–3)
3.000.05

ηT ~ 40%

ηT ~ 20%



TC6777

• Transport efficiency in the FI scheme has been investigated numerically 
using the hybrid-implicit PIC code Lsp.1

– Unlike Monte Carlo, the effects of self-fields are included.

• Three-dimensional calculations of 1-MeV electron beams have been made
with parameters relevant to OMEGA EP imploded cyrogenic DT targets.

• Resistive filamentation of beam current plays a role for these parameters.

 – Finite collisionality between the cold-electron return current
and plasma ions leads to filamentation of the beam current and
emittance growth.

 – Subpicosecond growth times even for 1-keV DT plasma.

– Growth rate depends upon beam thermal spread (temperature).

1 D. R. Welch et al., Nucl. Instrum. Methods Phys. Res. A 464, 134 (2001).

Summary/Conclusions

We have determined the maximum allowable transport
distance to be no more than several tens of microns
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We have evaluated transport efficiency for OMEGA EP
designs as a function of beam temperature and
stand-off distance from core

• An electron beam is generated by promotion from the background
over a 20-µm spot with a pulse duration of 10 ps.

• FI relevant parameters are chosen the beam source.

Z

Case 1:

 80 µm

Z

Case 2:

 40 µm

nb ~ 1020 cm–3, Ib ~ 2 MA, rG = 10 µm


