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A refractive 3-D ray trace relaxes the drive
requirement for polar direct drive (PDD)

TC6837

• Long-scale-length plasmas limit the validity of the 1-D
in 2-D ray trace

• An accurate refractive 3-D ray trace has been implemented in DRACO.

• This ray trace couples energy closer to the ablation surface
in the equatorial region.

• PDD simulations now require less drive in the equatorial region
than previously modeled.

– Implies more available system energy

Summary
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PDD enables direct-drive-ignition experiments
while the NIF is in the x-ray-drive configuration

Caveats:

• Repointing the x-ray-drive ports
leads to variations in incident
angles.

• The equator requires the highest
incident intensity to compensate
for higher refraction losses, lower
hydrodynamic efficiency, etc.

• 2-D effects also become
important: lateral mass flow,
lateral heat flow, etc.

• The “pointing” changes as the
target compresses.

Solution:

• Intensity variations on target
can be manipulated through a
combination of spot ellipticity
and pulse shape.
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Each sector of a DRACO simulation is driven by an angular
spectrum of rays when using the 1-D in 2-D ray trace
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• The spectrum changes as a function of polar angle due
 to the nonuniform overlap of beams in the PDD configuration.

– distribution is dependent on the projection radius

• The rays propagate and deposit energy within each sector as if each
sector is 1-D; assumes that rays flowing in and out balance each other.
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A nonlinear feedback optimization procedure compensates
for dynamic changes in absorption by monitoring
the ablation surface
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• The simple 1-D in 2-D ray trace requires
a dramatic level of compensation at the equator.
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Long-scale-length plasmas limit the validity
of the 1-D in 2-D ray trace

• The angular spectrum distribution changes with polar angle and radius.
– A fixed projection radius

is not appropriate.
– Ray flow in/out

of a sector will
not balance.
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A refractive 3-D ray trace has been implemented
in DRACO to handle the aspherical plasma

• Rays are traced from their respective beam ports.

– Ray distribution is optimized to yield uniform coverage.

– Ray positions are randomly chosen for each time step
and each beam.

• The rays are correctly traced in all regions.

– through distorted Lagrangian meshes

– dynamically adjusted step size

- accurately calculates trajectory and laser absorption

• Excellent agreement with LILAC (in the direct-drive configuration)

– shell position and absorption
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The laser deposition region develops more
spherically using the refractive 3-D ray trace

• The equatorial region
remains closer to the
ablation surface.

• Identical pulse
shapes are used
for all rings.

• This achieves
a modest gain
of 4.6.
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Improvements to the refractive
3-D ray trace are being implemented

• Increase gain by improving shell nonuniformity

– Tie in the nonlinear feedback optimization procedure
to derive optimal pulse shapes

• Decrease laser deposition noise

– Improve the initial ray distribution to provide uniform
coverage with less rays; inverse projection.
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A refractive 3-D ray trace relaxes the drive
requirement for polar direct drive (PDD)

TC6837

• Long-scale-length plasmas limit the validity of the 1-D
in 2-D ray trace

• An accurate refractive 3-D ray trace has been implemented in DRACO.

• This ray trace couples energy closer to the ablation surface
in the equatorial region.

• PDD simulations now require less drive in the equatorial region
than previously modeled.

– Implies more available system energy

Summary/Conclusions


