The Effect of Electromagnetic Fields on Electron-Thermal Transport in Laser-Produced Plasmas

 $\begin{array}{c}
 n_{e} \\
 Resonant field \\
 I \\
 Laser \\
 Laser \\
 |E|^{2} \\
 n_{c} \\
 n_{c} \\
 cos^{2}\theta \\
 x
\end{array}$

G. Li and V. N. Goncharov University of Rochester Laboratory for Laser Energetics 46th Annual Meeting of the American Physical Society Division of Plasma Physics Savannah, GA 15–19 November 2004 Summary

Ponderomotive terms modify thermal conduction near the critical surface

- Gradients in the laser-induced electric fields introduce ponderomotive terms in the electron heat flux.
- The ponderomotive transport coefficients, previously derived in the limit of Z >> 1,* are obtained for an arbitrary ion charge Z using the Chapman–Enskog method.
- The electric field gradients near the laser turning point and at the critical surface modify thermal transport and hydrodynamic profiles.**

^{*}A. V. Maximov et al., Sov. J. Plasma Phys. <u>16</u>, 331 (1990). **V. N. Goncharov (next talk in this session).

The effect of laser electromagnetic fields has previously been considered in the symmetric part of the distribution function*

Laser energy is absorbed by subthermal electrons

*A. B. Langdon, Phys. Rev. Lett. <u>44</u>, 575 (1980).

The Boltzmann equation is solved in the presence of laser electromagnetic fields using the Chapman–Enskog method

The Chapman–Enskog method yields ponderomotive terms in electric current and heat flux*

$$\mathbf{j} = \mathbf{env_T}\lambda_{\mathbf{e}} \left| \alpha_{\mathbf{j}\mathbf{1}}^{\mathsf{T}}\nabla \mathbf{ln\,T} + \alpha_{\mathbf{j}\mathbf{2}}^{\mathsf{T}} \left(\nabla \mathbf{ln\,nT} - \frac{\mathbf{eE_0}}{\mathsf{T}} \right) + \alpha_{\mathbf{j}\mathbf{2}}^{\mathsf{E}} \frac{\nabla \mathbf{v}_{\mathbf{E}}^{\mathbf{2}}}{\mathbf{v}_{\mathsf{T}}^{\mathbf{2}}} \right|$$

$$\mathbf{q} = \mathbf{n} \mathbf{T} \mathbf{v}_{\mathbf{T}} \lambda_{\mathbf{e}} \left[\alpha_{\mathbf{q}\mathbf{1}}^{\mathbf{T}} \nabla \mathbf{l} \mathbf{n} \mathbf{T} + \alpha_{\mathbf{q}\mathbf{2}}^{\mathbf{T}} \left(\nabla \mathbf{l} \mathbf{n} \mathbf{n} \mathbf{T} - \frac{\mathbf{e} \mathbf{E}_{\mathbf{0}}}{\mathbf{T}} \right) + \alpha_{\mathbf{q}\mathbf{2}}^{\mathbf{E}} \frac{\nabla \mathbf{v}_{\mathbf{E}}^{\mathbf{2}}}{\mathbf{v}_{\mathbf{T}}^{\mathbf{2}}} \right]$$

The neutrality condition j = 0 determines E_0

$$\mathbf{q} = \mathbf{n} \mathbf{T} \mathbf{v}_{\mathbf{T}} \lambda_{\mathbf{e}} \left[-\beta^{\mathbf{T}} \nabla \mathbf{l} \mathbf{n} \mathbf{T} + \beta^{\mathbf{E}} \frac{\nabla \mathbf{v}_{\mathbf{E}}^{2}}{\mathbf{v}_{\mathbf{T}}^{2}} \right]$$

*V. N. Goncharov and G. Li, "Effects of Electric Fields on Thermal Transport in Laser-Produced Plasmas," to be published in Physics of Plasmas.

• •

The ponderomotive term has the opposite sign of the thermal term.

Ponderomotive heat flux is mainly due to modification in the symmetric part of the distribution function

 $\frac{\partial \mathbf{f}}{\partial \mathbf{t}} = \sqrt{\frac{\pi}{8}} \frac{\mathbf{v}_{ei} \mathbf{v}_{T}^{3} \mathbf{v}_{E}^{2}}{\mathbf{v}^{2}} \frac{\partial}{\partial \mathbf{v}} \left(\frac{1}{\mathbf{v}} \frac{\partial \mathbf{f}}{\partial \mathbf{v}}\right) + \mathbf{J}_{ee}[\mathbf{f}]$

- Subthermal electrons (v << v_T) → absorption
- Suprathermal electrons (v >> v_T) → heat flux

$$\begin{split} &f\left(\nu >> \nu_{T}\right) \sim f_{M} exp\left(\frac{-7 \ \alpha}{225 \sqrt{2\pi}} \ \frac{\nu^{5}}{\nu_{T}^{5}}\right) \ \left(\alpha = \frac{Z \nu_{E}^{2}}{\nu_{T}^{2}} << 1\right) \\ &\nabla f \sim \nabla \alpha \sim \nabla |E|^{2} \\ &q \sim \nabla f \sim \nabla |E|^{2} \end{split}$$

The ponderomotive terms lead to density-profile steepening*

UR LLE

^{*}V. N. Goncharov (next talk in this session).

Ponderomotive terms modify thermal conduction near the critical surface

- Gradients in the laser-induced electric fields introduce ponderomotive terms in the electron heat flux.
- The ponderomotive transport coefficients, previously derived in the limit of Z >> 1,* are obtained for an arbitrary ion charge Z using the Chapman–Enskog method.
- The electric field gradients near the laser turning point and at the critical surface modify thermal transport and hydrodynamic profiles.**

^{*}A. V. Maximov et al., Sov. J. Plasma Phys. <u>16</u>, 331 (1990). **V. N. Goncharov (next talk in this session).