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Ponderomotive terms modify thermal
conduction near the critical surface

• Gradients in the laser-induced electric fields introduce
ponderomotive terms in the electron heat flux.

• The ponderomotive transport coefficients, previously derived
in the limit of Z >> 1,* are obtained for an arbitrary ion charge
Z using the Chapman–Enskog method.

• The electric field gradients near the laser turning point
and at the critical surface modify thermal transport
and hydrodynamic profiles.**

*A. V. Maximov et al., Sov. J. Plasma Phys. 16, 331 (1990).
**V. N. Goncharov (next talk in this session).

Summary
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The effect of laser electromagnetic fields has previously been
considered in the symmetric part of the distribution function*
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• Laser energy is absorbed by subthermal electrons

*A. B. Langdon, Phys. Rev. Lett. 44, 575 (1980).
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Electromagnetic fields reduce f(0); this

leads to a reduction in absorption.
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The Boltzmann equation is solved in the
presence of laser electromagnetic fields
using the Chapman–Enskog method
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The Chapman–Enskog method yields ponderomotive terms
in electric current and heat flux*
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The neutrality condition j = 0 determines E0
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*V. N. Goncharov and G. Li, “Effects of Electric Fields on Thermal Transport
in Laser-Produced Plasmas,” to be published in Physics of Plasmas.
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For typical ICF plasmas βE > βT

The ponderomotive term has the opposite sign of the thermal term.

βE ~ Z
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Ponderomotive heat flux is mainly due to modification
in the symmetric part of the distribution function

• Subthermal electrons (v << vT)

• Suprathermal electrons (v >> vT)

absorption

heat flux
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The ponderomotive terms lead
to density-profile steepening*
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*V. N. Goncharov (next talk in this session).
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Ponderomotive terms modify thermal
conduction near the critical surface

• Gradients in the laser-induced electric fields introduce
ponderomotive terms in the electron heat flux.

• The ponderomotive transport coefficients, previously derived
in the limit of Z >> 1,* are obtained for an arbitrary ion charge
Z using the Chapman–Enskog method.

• The electric field gradients near the laser turning point
and at the critical surface modify thermal transport
and hydrodynamic profiles.**

*A. V. Maximov et al., Sov. J. Plasma Phys. 16, 331 (1990).
**V. N. Goncharov (next talk in this session).

Summary/Conclusions


