Effect of Temporal Density Variation and Convergent Geometry on Nonlinear Bubble Evolution in the Classical Rayleigh–Taylor Instability

Layzer's model has been extended to include temporal variation in density and convergence effect

- Layzer's model describes the nonlinear bubble evolution in planar geometry with constant density.
- Temporal density variation and convergent effect are important in ICF implosions.
- Density variation modifies the asymptotic bubble growth to

$$\eta_0 = U_L \int \rho(t') dt' / \rho(t), \qquad U_L = \sqrt{\frac{g}{3k}}.$$

• Extension of Layzer's model to spherical geometry leads to $\eta_0 \rightarrow r_0(t) \int \frac{\bar{U}_L(t')}{r_0(t')} dt', \quad \bar{U}_L(t) = \sqrt{\frac{gr_0(t)}{\ell}} \text{ for a solid sphere.}$

Layzer's nonlinear RT model is only valid for planar geometry

Bubble tip velocity saturates at $\sqrt{g}/3k$

Density variation can be easily included in the model

$$\nabla^2 \Phi = -\frac{\dot{\rho}}{\rho} \qquad \Phi = \mathbf{a}(\mathbf{t}) \cos(\mathbf{k}\mathbf{x}) \mathbf{e}^{-\mathbf{k}(\mathbf{y}-\eta_0)} - \frac{\dot{\rho}}{\rho} \frac{\mathbf{y}^2}{2}$$

Asymptotic solution

$$\eta_{0} \xrightarrow{t \to \infty} \sqrt{\frac{g}{3k}} \frac{\int \rho(t') dt'}{\rho(t)}$$

The Layzer's model is extended to include the spherical convergence effect

Solid sphere: ρr₀³=const • $\Phi = \mathbf{a}(\mathbf{t}) \mathbf{r}^{\ell} \mathbf{P}_{\ell}(\mathbf{cos}\theta) - \left(\dot{\mathbf{r}}_{\mathbf{0}} + \frac{\mathbf{r}_{\mathbf{0}}}{\mathbf{3}}\frac{\dot{\mathbf{p}}}{\mathbf{p}}\right) \frac{\mathbf{r}_{\mathbf{0}}^{2}}{\mathbf{r}} - \frac{\mathbf{r}_{\mathbf{0}}^{2}}{\mathbf{r}}\frac{\dot{\mathbf{p}}}{\mathbf{p}}$ ρ_h $\eta = \eta_0 + \eta_2 \theta^2$ r₀(t • $\frac{\partial \Phi}{\partial r} = \dot{r}_0$ at equilibrium • $\frac{d}{dt}\left(\frac{\eta_2}{r_0}\right) = \frac{d}{dt}\left(\frac{\eta_0}{r_0}\right)\left(2\ell\frac{\eta_2}{r_0} - \frac{\ell(\ell+1)}{4}\right)$ $\frac{\eta_2}{r_0} \xrightarrow{t \to \infty} \frac{\ell+1}{8}$ • $-\frac{1}{r_0^2}\frac{d}{dt}(r_0^2\dot{\xi}) + \ell\dot{\xi}^2 = -\frac{\ddot{r}_0}{r_0}, \quad \xi = \frac{\eta_0}{r_0}$

• $\dot{\xi} = -\sqrt{-\frac{\ddot{r_0}}{\ell r_0}}$ $\ell >> 1$

Asymptotic analysis agrees with an exact solution of the model

Even though bubble amplitude decreases in solid sphere, η_0/r_0 always increases

If $\rho r_0^3 \neq \text{const}$ (shell), asymptotic amplitude is determined by a first-order nonlinear differential equation

LLE

•
$$\ell \dot{\xi}^2 - \dot{m} \left\{ \dot{\xi} \left[1 + 2(\ell+1) \left(\frac{\xi}{m} \right)^2 \right] - 2\xi \frac{\dot{r}_0}{r_0} \right\} + \frac{\ddot{r}_0}{r_0} m^2 = 0$$
 $\xi = \rho r_0^2 \eta_0, \ m(t) = \rho(t) r_0^3(t),$
 $t \rightarrow \infty, \quad \frac{\eta_2}{r_0} \rightarrow \frac{\ell+1}{8}$

•
$$r_0(t) = 400 - \frac{100t^2}{2}$$
, $\rho(t) = \rho_0 e^{\epsilon t}$

TC6717

Bubble amplitude in spherical geometry does not decrease with radius

• Similar results are derived for cylindrical geometry in Reference 1.

¹Y. Yedvab *et al.*, presented at the 6th IWPCTM, Marseille, France, 18–21 June 1997, p. 528.

Summary/Conclusions

Layzer's model has been extended to include temporal variation in density and convergence effect

- Layzer's model describes the nonlinear bubble evolution in planar geometry with constant density.
- Temporal density variation and convergent effect are important in ICF implosions.
- Density variation modifies the asymptotic bubble growth to

$$\eta_0 = U_L \int \rho(t') dt' / \rho(t), \qquad U_L = \sqrt{\frac{g}{3k}}.$$

• Extension of Layzer's model to spherical geometry leads to $\eta_0 \rightarrow r_0(t) \int \frac{\bar{U}_L(t')}{r_0(t')} dt', \quad \bar{U}_L(t) = \sqrt{\frac{gr_0(t)}{\ell}} \text{ for a solid sphere.}$