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ρ = const
ρ = ρ0e–0.4t
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Layzer’s model has been extended to include
temporal variation in density and convergence effect

• Layzer’s model describes the nonlinear bubble evolution
in planar geometry with constant density.

• Temporal density variation and convergent effect
are important in ICF implosions.

• Density variation modifies the asymptotic bubble growth to

• Extension of Layzer’s model to spherical geometry leads to

                                                                                for a solid sphere.

Summary

.UL = g
3k

η0 = UL ρ ′t( ) d ′t∫ ρ t( ),

η0 → r0 t( ) UL ′t( )
r0 ′t( )∫ d ′t , UL t( ) = gr0 t( )
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Layzer’s nonlinear RT model
is only valid for planar geometry

Φ = a(t)cos(kx)e–k(y–η0)

g
3k

Bubble tip velocity saturates at g /3k

Expansion near bubble tip

η = η0 + η2x2
ρh
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•  U = ∇Φ

∇2Φ = 0•
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Bubble curvature

Bubble amplitude η0

Bubble velocity Ub = η0�
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Density variation can be easily included
in the model

Decompression
ρ = ρ0e–εt

∇2Φ = –
ρ�
ρ

ρ�Φ = a t( ) cos kx( ) e–k y–η0( ) –
ρ

y2

2

ρ = const

Asymptotic solution
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The Layzer’s model is extended to include
the spherical convergence effect
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Asymptotic analysis agrees with an exact solution
of the model

�= 200, g = 100 µm /ns2( ), r0 0( ) = 400 µm( )•
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Even though bubble amplitude decreases
in solid sphere, η0/r0 always increases
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If ρr3 = const (shell), asymptotic amplitude is determined
by a first-order nonlinear differential equation
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Bubble amplitude in spherical geometry
does not decrease with radius
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•  Similar results are derived for cylindrical geometry in Reference 1.

1Y. Yedvab et al., presented at the 6th IWPCTM,  
Marseille, France, 18–21 June 1997, p. 528.
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Layzer’s model has been extended to include
temporal variation in density and convergence effect

• Layzer’s model describes the nonlinear bubble evolution
in planar geometry with constant density.

• Temporal density variation and convergent effect
are important in ICF implosions.

• Density variation modifies the asymptotic bubble growth to

• Extension of Layzer’s model to spherical geometry leads to

                                                                                for a solid sphere.

Summary/Conclusions

.UL = g
3k

η0 = UL ρ ′t( ) d ′t∫ ρ t( ),

η0 → r0 t( ) UL ′t( )
r0 ′t( )∫ d ′t , UL t( ) = gr0 t( )
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