Stopping, Straggling and Blooming of Directed Energetic Electrons in Hydrogenic Plasmas

MIT

46th Annual Meeting of the Division of Plasma Physics Savannah, GA, Nov.15-19, 2004

Multiple scattering significantly impacts electron energy loss, straggling, and blooming in plasmas

- Scattering and energy loss are *inextricably* coupled
- The mutual interaction among energy loss, straggling and blooming leads to a region of enhanced linear energy deposition
- Both straggling and blooming are proportional to the square root of the penetration when $\Delta E > 40\%$ for 1 MeV electrons
- Multiple scattering eventually dominates over all other sources
 of beam divergence

Multiple scattering is relevant to physics of current interest

- Fundamental physics
- Fast ignition
 - Electron penetration and straggling
 - Energy deposition profile
 - Beam blooming
- Pre-heat
- Astrophysics

(e.g. relativistic astrophysical jets)

*Supported in part by DOE, LLE, LLNL and by the Fusion Science Center for Extreme States of Matter and Fast Ignition Physics at UR

The angular and spatial distributions are calculated from the integro-differential diffusion equation

$$\frac{\partial f}{\partial s} + \mathbf{v} \cdot \nabla f = N \int [f(\mathbf{x}, \mathbf{v}', s) - f(\mathbf{x}, \mathbf{v}, s)] \sigma (|\mathbf{v} - \mathbf{v}'|) d\mathbf{v}'$$

• Angular distribution \rightarrow mean deflection angle, <cos θ >

$$f(\theta,s) = \frac{1}{4\pi} \sum_{\ell=0}^{\infty} (2\ell+1) P_{\ell}(\cos\theta) \exp\left(-\int_{0}^{s} \kappa_{\ell}(s') ds'\right)$$

- Longitudinal distribution → penetration and straggling
- Lateral distribution → beam blooming

The penetration is reduced by ~ 30% compared to the range, and energy transfer is enhanced towards the end of the penetration

With a mean penetration of ~13.8 μ m, multiple scattering results in longitudinal straggling of \pm ~3 μ m and lateral blooming of \pm ~5 μ m

Longitudinal straggling

$$\Sigma_{\rm R}(E) = \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$$

Lateral blooming

$$\Sigma_{\rm B}(E) = \sqrt{\langle y^2 \rangle}$$

Where:
$$\langle y \rangle = \langle z \rangle = 0$$

1 MeV electrons; ρ = 300 g/cm³; T_e = 5 keV

Straggling smears out the effective Bragg peak

Including the effects of blooming would effectively increase (decrease) Σ_R for values less (greater) than the mean penetration

When $\Delta E > 40\%$, both straggling and blooming are approximately proportional to the square root of the penetration

When **∆E > 40%**

 $\Sigma_{\rm B} \propto \sqrt{\langle {\rm x} \rangle}$

 $\Sigma_{\rm R} \propto \sqrt{\langle {\rm x} \rangle}$

Assumption of uniform energy deposition is approximately justified when $\Delta E < 40\%$, for which little straggling and blooming occurs

The mutual interaction between energy loss, straggling and blooming leads to a region of enhanced linear energy deposition

For fast ignition, multiple scattering must *ultimately* dominate over all other mechanisms in affecting energy deposition and beam divergence

When n_b/n_e > 10⁻²: Weibel-like instabilities +
 When n_b/n_e < 10⁻²: Multiple scattering
 → the interaction can be envisioned as the linear superposition of individual, isolated electrons interacting with the plasma

Two conditions for blooming and straggling become significant:

These calculations are relevant to other current problems, such as preheat in ICF, or relativistic astrophysical jets

For relativistic astrophysical jets, electron energies ~ 1 MeV or greater

- ρR (FI) ~ ρR (jet) ~ 0.4 g/cm²
- R (FI) ~ 10 μm ~10⁻³ cm
- R (Jet) ~ 10⁴ light years ~10²² cm

Multiple scattering significantly impacts electron energy loss, straggling, and blooming in plasmas

- Scattering and energy loss are *inextricably* coupled
- The mutual interaction among energy loss, straggling and blooming leads to a region of enhanced linear energy deposition
- Both straggling and blooming are proportional to the square root of the penetration when $\Delta E > 40\%$ for 1 MeV electrons
- Multiple scattering eventually dominates over all other sources
 of beam divergence