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Pickets coupled to low-adiabat drive reduce
both imprinting and perturbation growth

• Shell-adiabat shaping has the potential to improve target stability
without significantly increasing the energy needed for compression.

• Planar experiments with pickets
– Low-intensity picket reduces growth for 20-µm perturbations.
– High-intensity picket stabilizes 20-µm perturbations.
– Picket pulses were as effective as 1-D, 1.5-Å SSD at the reduction

of short-wavelength imprinting.

• Spherical target experiments with pickets
– A decaying shock-wave picket increases both absolute

and normalized yields.
– A relaxation picket increases experimental yield.

• Simulations show the performance of cryogenic implosions
will improve with picket pulses.

Summary
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Improved target stability using picket pulses
to increase and shape the ablator adiabat

• Motivation for adiabat shaping

• Planar-target experiments
– growth reduction
– imprint reduction

• Spherical-target experiments
– decaying shock-wave picket
– relaxation picket

• Extension to cryogenic targets

Outline
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A large ablation interface adiabat reduces RT growth and
a small interior adiabat minimizes compression energy
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Adiabat shaping is achieved using a high-intensity
picket to create a decaying shock wave1

• t = 0 Picket creates a strong shock.
• t = tp Rarefaction wave (RW) is

launched at t = tp.

• t = tRW RW meets the shock.
• t > tRW Shock strength decreases in time.
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The shock wave (from the main pulse foot) shapes
the adiabat as it travels up a relaxed density profile1

Main pulse
is on;
main shock
is launched.

Laser is off;
there is no
applied
pressure.
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Perturbation growth at the ablation interface
was measured for three wavelengths

E10652a

Picket pulse
〈Ip〉 = 0.7 to 1.4 × 1014 W/cm2

〈FWHM〉 = 0.30 ns
〈separation〉 = 1.9 ns
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• 20-µm-thick CH targets

• Perturbation wavelengths were
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Pickets with an intensity of 50% of the drive pulse
show reduced growth for 20-µm perturbations
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Pickets with an intensity of 100% of the drive pulse show
reduced growth for both 30- and 20-µm perturbations

λ = 30 µm λ = 20 µm
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A brief high-intensity picket at the start
of the foot pulse reduces imprint1
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Measured radiographs show significant
imprint reduction with picket pulses

See V. Smalyuk JO1.005 this conference.
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Little reduction in imprinting is seen for long-wavelength
perturbations with a picket pulse
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The picket is as effective as 1-D, 1.5-Å SSD at reducing
the imprint for 60- and 30-µm wavelength perturbations
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A picket pulse was added to a drive pulse that
implodes a CH target

Picket pulse
Width (FWHM) = 120 ps

Amplitude = 0.4 of drive
Position = 340 ps
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Both the experimental yield and the normalized yield
increase when a picket pulse is used
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The neutron burn rate increases when
a picket pulse is added to the drive pulse
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A relaxation picket drive was designed
for thick CH targets

• Total laser energy: 18 kJ
• 6-TW, 60-ps Gaussian prepulse (RX)
• Contrast ratio of 2 in RX main pulse
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Measured experimental yields increase
when a relaxation (RX) picket is used
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LILAC simulations indicate RX adiabat shaping
is effective throughout the acceleration phase

• RX shaping is significantly higher than “natural” radiative shaping.
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Greater shell stability is predicted for high-performance
OMEGA cryogenic target designs with an intensity picket
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A decaying shock wave picket shapes the shell adiabat
at the start of acceleration
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The relaxation picket shapes the adiabat of the shell
at the onset of acceleration
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Multimode ORCHID simulations demonstrate better
stability of the shaped-adiabat design

Shell is significantly less distorted in the picket design.

Density contours at end of shell acceleration
Imprint simulations:  � = 2–200, DPP + PS, 1-THz SSD; OMEGA design
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Pickets coupled to low-adiabat drive reduce
both imprinting and perturbation growth

• Shell-adiabat shaping has the potential to improve target stability
without significantly increasing the energy needed for compression.

• Planar experiments with pickets
– Low-intensity picket reduces growth for 20-µm perturbations.
– High-intensity picket stabilizes 20-µm perturbations.
– Picket pulses were as effective as 1-D, 1.5-Å SSD at the reduction

of short-wavelength imprinting.

• Spherical target experiments with pickets
– A decaying shock-wave picket increases both absolute

and normalized yields.
– A relaxation picket increases experimental yield.

• Simulations show the performance of cryogenic implosions
will improve with picket pulses.

Summary/Conclusions
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Picket-pulse shapes are not new to ICF, but LLE has
studied the effect of a wide range of picket pulses

1975 J. D. Lindl and W. C. Mead:  Improve target—
performance improved when accelerated by a series of short
laser pulses, “pickets”.  Attributed to impulsive acceleration

1980’s Work done at LLNL and LLE shows higher ablation front
stability when a single picket is added to a low-adiabat
drive pulse.

2003 T. J. B. Collins, et al.:  Simulations demonstrate imprint
reduction with a picket.

V. N. Goncharov, et al.:  Higher gain for NIF targets
with “decaying shock wave” picket

K. Anderson and R. Betti:  Theory of “decaying shock
wave” picket

2004 K. Anderson and R. Betti:  Theory of “relaxation picket”
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The first published work on adiabat shaping in
the open literature used low-energy x ray absorption

1980’s Work done at LLNL shows adiabat shaping in spherical targets

1991 J. H. Gardner, et al.:  First published mention of adiabat shaping
by absorption of low energy x rays

1999 L. Phillips, et al.:  X-ray adiabat shaping target design with
W-doped CH and wetted foam

2000 S. E. Bodner, et al.:  X-ray adiabat shaping target design
with thin Au layer and wetted foam

2003 V. N. Goncharov, et al.:  Higher gain for NIF target due
to adiabat shaping

            K. Anderson and R. Betti:  Theory of “decaying shock wave”
adiabat shaping

2004 K. Anderson and R. Betti:  Theory of “relaxation picket”
adiabat shaping
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The neutron burn rate increased when the RX picket
drive was used with SSD off
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Single-mode 2-D simulations of imprint in DT cryo
targets show reduced growth rates and lower
perturbation mode amplitudes for RX designs
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The intensity spike reduces the effects of CH layer

• The intensity spike
– launches a stronger shock,
– which reaches the CH/DT interface sooner,
– and results in a greater post-shock sound speed;
– the width of the compressed CH is less,
– so the rarefaction waves returns sooner
– and is shorter in duration.

• The spike reduces the early Rayleigh–Taylor growth.

• Rayleigh–Taylor growth starts at a lower amplitude.
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The intensity picket reduces ablation
pressure nonuniformity

• Smoothing distance dc
between critical and
ablation surfaces increases
with laser intensity.

• Pressure nonuniformity
decreases exponentially
with smoothing distance.

• Thermal smoothing
contributes to imprint
reduction.

A
b

la
tio

n
-p

re
ss

u
re

n
o

n
u

n
ifo

rm
it

y 
(%

)

0.0

0.5

1.0

1.5

2.0

0.00 0.500.25

Time (ns)

With picket

No outer CH layer



TC5955

The intensity picket reduces
both the growth rate and laser imprint1
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1T. J. B. Collins, S. Skupsky, Phys. Plasmas 9, 275 (2002).
2R. Betti et al., Phys. Plasmas 5, 1446 (1998).
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The adiabat at the ablation interface increases
from 4 to 7 when a picket is added

α = 2 α = 2P
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Imprint reduction is greater for shorter wavelengths

• Early-time growth is less for greater wavelengths.
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Including the effects of finite shock strength and finite
ablation leads to somewhat shallower adiabat profiles

Decaying shock Relaxation (1st kind) Relaxation (2nd kind)
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Adiabat shaping is done using an intensity picket

tp

Calculations show valid for γ > 1.2.

• t = 0 Picket creates a strong shock
• t = tp Rarefaction wave (RW) is launched at t = tp.Power
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The Betti dispersion formula with 1-D hydrodynamic
simulations were used to design the laser pulse shape

• The laser pulse consists of a picket
pulse followed by a drive pulse.

• We characterize the picket shape
by three quantities.

• The standard drive pulse is a
750-ps rise to a  200 TW/cm2 
flattop.
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Growth of the 60-µm perturbation at the ablation interface
is reduced when a picket-fence pulse is used
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Little growth is measured for the 20-µm perturbation
with the picket-fence pulse
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