The Role of Viscosity in Simulations of Strong Shocks in Low-Density Foams

I. V. Igumenshchev University of Rochester Laboratory for Laser Energetics 46th Annual Meeting of the American Physical Society Division of Plasma Physics Savannah, GA 15–19 November 2004

Summary

2-D simulations of strong planar shocks in viscous lowdensity foams satisfy the Rankine–Hugoniot condition

- Nonviscous 2-D simulations* show deviations from the Rankine–Hugoniot condition.
- These deviations are explained by a slowly decaying 2-D turbulence in the post-shock region.
- Estimated viscosity in ICF foams provides quick dissipation of the post-shock turbulence.
- Low-density foams in ICF shock experiments can be treated as a uniform medium with the equivalent average density.

An idealized 2-D model of low-density foams is used in simulations

Simulations were performed using the 2-D Eulerian PPM code

- We solve the system of Navier–Stokes equations
- Explicit/implicit solver for the viscous part
- Multifluid capability (two fluids used).
- Ideal gas equation of state
- 2-D uniform cartesian grid; domain dimension: 1 L \times 100 L (100 \times 10,000 numerical zones)
- Simulations were performed in the shock reference frame
- Periodic and reflection boundary conditions in the transverse direction

The structure of the shock front can be characterized by the effective deceleration and collision paths of the fibers

The thickness of the shock front depends on the foamdensity contrast and fiber separation

Nonviscous simulations show deviations from the Rankine–Hugoniot relation

- The post-shock conditions depend on the assumed transverse boundary conditions:
 - post-shock overcompression for periodic boundaries and
 - post-shock undercompression for reflection boundaries.

In 2-D nonviscous simulations, the post-shock turbulent kinetic energy does not dissipate properly

- 2-D turbulence does not provide the correct dissipation of energy through its cascade from large- to small-scale motions.
- Properties of 2-D turbulence depend on boundary conditions.
- Adding appropriate viscosity in 2-D simulations can help to model the properties of real 3-D turbulence in shock-compressed foams.

The addition of physical viscosity to the simulation demonstrates good agreement with the Rankine–Hugoniot condition

A comparison of the nonviscous and viscous runs clearly shows the effect of viscous smearing.

Time-averaged profiles for the steady-state shock in the viscous foam, f = 400 and $v = 0.1 \text{ cm}^2/\text{s}$

Summary/Conclusions

2-D simulations of strong planar shocks in viscous lowdensity foams satisfy the Rankine–Hugoniot condition

- Nonviscous 2-D simulations* show deviations from the Rankine–Hugoniot condition.
- These deviations are explained by a slowly decaying 2-D turbulence in the post-shock region.
- Estimated viscosity in ICF foams provides quick dissipation of the post-shock turbulence.
- Low-density foams in ICF shock experiments can be treated as a uniform medium with the equivalent average density.