The Role of Viscosity in Simulations
of Strong Shocks in Low-Density Foams
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Summary

2-D simulations of strong planar shocks in viscous low-

density foams satisfy the Rankine—Hugoniot condition
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e Nonviscous 2-D simulations* show deviations
from the Rankine—Hugoniot condition.

* These deviations are explained by a slowly
decaying 2-D turbulence in the post-shock region.

e Estimated viscosity in ICF foams provides quick
dissipation of the post-shock turbulence.

* Low-density foams in ICF shock experiments can be treated
as a uniform medium with the equivalent average density.

*Kotelnikov and Montgomery (1998); Hazak et al., (1998); Phillippe et al. (2004).
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An idealized 2-D model of low-density

foams is used in simulations
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Quasi-random
foam structures

Dimensionless parameters:

R .ng _Pfiber
Pi-fiber

Dimension parameters:

L=0.2um

up=5x108 cm/s
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Simulations were performed using

the 2-D Eulerian PPM code
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We solve the system of Navier—Stokes
equations

Explicit/implicit solver for the viscous
part

Multifluid capability (two fluids used).
Ideal gas equation of state

2-D uniform cartesian grid; domain
dimension: 1 L x 100 L (100 x 10,000
numerical zones)

Simulations were performed
in the shock reference frame

Periodic and reflection boundary
conditions in the transverse direction
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Pfiber/Pi-fiber = 1




The structure of the shock front can be characterized by
the effective deceleration and collision paths of the fibers
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Deceleration path

Myiber = 2R XL gecPi-fiber

Lyec ~ L: ICF “wetted” foams

Lyec >> L: interacting fibers
(low-density or “dry” foams)
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Collision path
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The thickness of the shock front depends on the foam-
density contrast and fiber separation

Three basic zones can be

distinguished in the shock
front:
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1. Fiber deceleration/zone zz'; e:;
L aﬁv 1J; ‘a)
~ ~dec % }f
2. Fiber collision zone |
~(2+3)Lcol

3. Mixing or turbulent zone |

Reduced
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Nonviscous simulations show deviations

from the Rankine—Hugoniot relation
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Time-averaged profiles for the steady-
e The post-shock conditions depend state shock, f = 400.

on the assumed transverse A el e
boundary conditions: 3 N_
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In 2-D nonviscous simulations, the post-shock
turbulent kinetic energy does not dissipate properly
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! ! N e 2-D turbulence does not provide
Nonviscous the correct dissipation of energy
| through its cascade from large- to

1.0 - — small-scale motions.
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Relative turbulent kinetic energy =
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': e Properties of 2-D turbulence
depend on boundary conditions.

B | < Adding appropriate viscosity
0.5 ) ) )

in 2-D simulations can help
to model the properties

| of real 3-D turbulence

| in shock-compressed foams.
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The addition of physical viscosity to the simulation demonstrates
good agreement with the Rankine—Hugoniot condition
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A comparison of the nonviscous Time-averaged profiles for the steady-state
and viscous runs clearly shows shock in the viscous foam, f = 400 and
the effect of viscous smearing. v=0.1cm?/s
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Summary/Conclusions

2-D simulations of strong planar shocks in viscous low-

density foams satisfy the Rankine—Hugoniot condition
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e Nonviscous 2-D simulations* show deviations
from the Rankine—Hugoniot condition.

* These deviations are explained by a slowly
decaying 2-D turbulence in the post-shock region.

e Estimated viscosity in ICF foams provides quick
dissipation of the post-shock turbulence.

* Low-density foams in ICF shock experiments can be treated
as a uniform medium with the equivalent average density.

*Kotelnikov and Montgomery (1998); Hazak et al., (1998); Phillippe et al. (2004).
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