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1 µm

• Viscous flows satisfy
the Rankine–Hugoniot
condition.
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2-D simulations of strong planar shocks in viscous low-
density foams satisfy the Rankine–Hugoniot condition

Summary

*Kotelnikov and Montgomery (1998); Hazak et al., (1998); Phillippe et al. (2004).

• Nonviscous 2-D simulations* show deviations
from the Rankine–Hugoniot condition.

• These deviations are explained by a slowly
decaying 2-D turbulence in the post-shock region.

• Estimated viscosity in ICF foams provides quick
dissipation of the post-shock turbulence.

• Low-density foams in ICF shock experiments can be treated
as a uniform medium with the equivalent average density.
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An idealized 2-D model of low-density
foams is used in simulations

Quasi-random
foam structures
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Dimensionless parameters:

Dimension parameters:

L = 0.2 µm

u0 = 5 × 106 cm/s
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Simulations were performed using
the 2-D Eulerian PPM code
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• We solve the system of Navier–Stokes
equations

• Explicit/implicit solver for the viscous
part

• Multifluid capability (two fluids used).

• Ideal gas equation of state

• 2-D uniform cartesian grid; domain
dimension: 1 L × 100 L (100 × 10,000
numerical zones)

• Simulations were performed
in the shock reference frame

• Periodic and reflection boundary
conditions in the transverse direction

ρfiber/ρi-fiber = 1

Shock
front

3L
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The structure of the shock front can be characterized by
the effective deceleration and collision paths of the fibers

Deceleration path

Ldec ~ L: ICF “wetted” foams
Ldec >> L: interacting fibers

(low-density or “dry” foams)

mfiber = 2R×Ldecρi-fiber ⇒ Ldec
L

= π
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L

ρfiber
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Collision path

2R×nfiber ×Lcol = 1

∆ ≈ 2 – 3( )Lcol

Lcol determines
“thickness” of the
shock front ∆:∆ρ
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Three basic zones can be
distinguished in the shock
front:

1. Fiber deceleration/zone

2. Fiber collision zone

3. Mixing or turbulent zone
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The thickness of the shock front depends on the foam-
density contrast and fiber separation

≈ Ldec

≈ 2 ÷ 3( )Lcol

f = ρfiber ρi-fiber = 4 f = 4 ×102 f = 4 ×104
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Nonviscous simulations show deviations
from the Rankine–Hugoniot relation

Time-averaged profiles for the steady-
state shock, f = 400.
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• The post-shock conditions depend
on the assumed transverse
boundary conditions:

– post-shock overcompression
for periodic boundaries and

– post-shock under-
compression for reflection
boundaries.
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In 2-D nonviscous simulations, the post-shock
turbulent kinetic energy does not dissipate properly

=
u2 − u( )2

u( )2
Relative turbulent kinetic energy
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Nonviscous

Viscous

• 2-D turbulence does not provide
the correct dissipation of energy
through its cascade from large- to
small-scale motions.

• Properties of 2-D turbulence
depend on boundary conditions.

• Adding appropriate viscosity
in 2-D simulations can help
to model the properties
of real 3-D turbulence
in shock-compressed foams.
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The addition of physical viscosity to the simulation demonstrates
good agreement with the Rankine–Hugoniot condition

Time-averaged profiles for the steady-state
shock in the viscous foam, f = 400 and
ν = 0.1 cm2/s

A comparison of the nonviscous
and viscous runs clearly shows
the effect of viscous smearing.

Re = ∞ Re ≈ 1000
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2-D simulations of strong planar shocks in viscous low-
density foams satisfy the Rankine–Hugoniot condition

Summary/Conclusions

• Nonviscous 2-D simulations* show deviations
from the Rankine–Hugoniot condition.

• These deviations are explained by a slowly
decaying 2-D turbulence in the post-shock region.

• Estimated viscosity in ICF foams provides quick
dissipation of the post-shock turbulence.

• Low-density foams in ICF shock experiments can be treated
as a uniform medium with the equivalent average density.

*Kotelnikov and Montgomery (1998); Hazak et al., (1998); Phillippe et al. (2004).


