

C. Stoeckl, T. C. Sangster, C. Mileham, and S. Roberts

Laboratory for Laser Energetics University of Rochester

R. A. Lerche

Lawrence Livermore National Laboratory

Summary

NIF neutron bang time detector prototypes have been developed and tested on OMEGA

 The neutron bang time detector (NBT) diagnostic requirement for the NIF is better than 100-ps accuracy over a yield range from 10⁹ to 10¹⁶ DD and DT neutron yield. UR

- The proposed solution is a three channel system based on a fast scintillator and CVD diamond detectors.
- Prototypes tested in DD and DT implosions on OMEGA show better than 100-ps timing accuracy, satisfying the NIF specification.

A neutron bang time (NBT) detector is a core/facility diagnostic for the NIF

- The most important requirements developed by the expert group for the NBT on the NIF are
 - the distance from TCC (~ 50 cm),
 - the minimum neutron yield (1×10^9) ,
 - bang time accuracy (\leq 100 ps for DD and DT), and
 - dynamic range $(10^9 \text{ to } 10^{16})$.

The NIF NBT prototype has been developed and tested on OMEGA, satisfying NIF specifications.

The conceptual design of the NIF NBT prototype housing is simple; it should be able to work at TIM/DIM

- Light-tight thin aluminum cylinder for the scintillator + PMT
- Tungsten alloy shielding with removable front plate
- Two CVD diamonds inside the tungsten shielding

Two scintillator and three CVD-diamond prototypes were tested in re-entrant tubes in the OMEGA target chamber

UR 🔌

- NBT1 scintillator channel
 - 11-mm-diam, 3-mm-thick BC-422Q (1%) scintillator
 - Hamamatsu R3809U-52, PMT with two MCP's, 140-ps rise time
 - PMT gain of 10^5 and neutral density filter ND = 1 (attenuation 10)
- NBT2 scintillator channel
 - 17-mm-diam, 3-mm-thick BC-422 scintillator
 - Photek 113, PMT with one MCP, 150-ps rise time, gain 1000
- CVD diamond channels
 - CVD1: 10-mm-diam, 1.0-mm-thick wafer
 - CVD2: 5-mm-diam, 0.3-mm-thick wafer
 - CVD3: 2-mm-diam, 0.5-mm-thick wafer
- Scintillators and CVD diamonds were at 75 cm from TCC.

Several different detector housings were tested in the reentrant tube on OMEGA for the NIF NBT prototype

The infrastructure of the existing LLE NBT detector was used for the NIF NBT prototype tests

It is possible to calibrate scintillator and CVD diamond channels using a 100-ps laser pulse on a gold target

The results from the single-stage MCP PMT prototype demonstrate its feasibility for the NIF

Shot 36100, DD, $Y_n = 3.9 \times 10^{11}$ Scintillator channel **CVD** diamond channel 0.15 20 Signal (V) Signal (V) 15 0.10 10 0.05 5 0 0.00 -2 0 2 6 8 10 2 6 8 10 4 Δ Π Time (ns) Time (ns)

UR 🔌

- When scaled to 50 cm from TCC and with a DD neutron yield of $1.0\times10^9,$ the scintillator channel of the NIF NBT2 will give a 260 mV signal.

Both scintillator and CVD diamond channels have a bang time accuracy better than 100 ps

The internal bang time precision of the NIF NBT prototype CVD diamond channels is about 15 ps

A very small CVD diamond detector will extend the NIF NBT yield range up to 1×10^{16}

E13510

Summary/Conclusions

NIF neutron bang time detector prototypes have been developed and tested on OMEGA

 The neutron bang time detector (NBT) diagnostic requirement for the NIF is better than 100-ps accuracy over a yield range from 10⁹ to 10¹⁶ DD and DT neutron yield. UR ·

- The proposed solution is a three channel system based on a fast scintillator and CVD diamond detectors.
- Prototypes tested in DD and DT implosions on OMEGA show better than 100-ps timing accuracy, satisfying the NIF specification.