# Measurements of time evolution of ion temperature in D<sup>3</sup>He implosions at OMEGA



46<sup>th</sup> Annual Meeting of the Division of Plasma Physics Savannah, GA November 15-19, 2004

### C. K. Li, F. H. Séguin, J. DeCiantis, J. R. Rygg and R. D. Petrasso\*

**Plasma Science and Fusion Center** 

Massachusetts Institute of Technology

### V. Yu. Glebov, C. Stoeckl, D. D. Meyerhofer<sup>†</sup>, S. P. Regan,

T. C. Sangster and V. A. Smalyuk

Laboratory for Laser Energetics

**University of Rochester** 

\* Also Visiting Senior Scientist at LLE

<sup>†</sup> Also Department of Mechanical Engineering, Physics and Astronomy.



#### Summary

## First measurements of evolution of ion temperature during shock and compression burn have been performed at OMEGA

- Spatially averaged  $T_i(t)_{DD}$  is ~300 eV lower than  $T_i(t)_{D3He}$ .
- Shock-induced temperature is ~70% higher than the temperature during the compression.
- Size of D<sup>3</sup>He-burn region is ~25% smaller than the DD-burn region during the shock and the compression phase.
- This work suggests that the fuel is not isobaric during shock burn and later stages of compression burn.

# A large set of experimental data from one D<sup>3</sup>He implosion is used in the analysis



### ρR<sub>tot</sub>(t) is inferred from D<sup>3</sup>He-p spectrum and D<sup>3</sup>Heburn rate



J. A. Frenje et al., Phys. Plasmas 11 (2004) 2798

# Parabolic like temperature and density profiles of the fuel are used to model the experimental data

$$\begin{split} T_{i}(r,t) &= T_{i}(0,t) \Bigg[ 1 - \left( \frac{r}{R(t) + \Delta R(t)} \right)^{2} \Bigg]^{k_{1}(t)} \\ n_{i}(r,t) &= n_{i}(0,t) \Bigg[ 1 - \left( \frac{r}{R(t)} \right)^{2} \Bigg]^{k_{2}(t)} \end{split}$$

- R(t) represents the position of the fuel-clean-shell interface at a certain time.
- $\Delta R(t)$  represents the thickness of the clean shell at a certain time.
- $T_i(0,t)$ ,  $k_1(t)$ ,  $n_i(0,t)$  and  $k_2(t)$  are free fitting parameters.

# Several measurements are used as constraints in the implosion model

- D<sup>3</sup>He-burn rate
- DD-burn rate
- $\rho R_{tot}(t) \Rightarrow$  Position of the fuel-clean-shell interface R(t)

#### **Additional constraints:**

- Conservation of fuel mass
- Isobaric fuel (switched on and off)

## Modeled D<sup>3</sup>He and DD-burn rates were fitted to measured data



### A non isobaric model describes the D<sup>3</sup>He and DDburn rate very well



# Significantly different T<sub>i</sub>(r) and n<sub>i</sub>(r) are observed at shock-bang and compression-bang time



## Modeled $T_i(t)_{DD}$ is ~300 eV lower than $T_i(t)_{D3He}$



Shock-induced temperature is ~70% higher than the temperature during compression.

### Size of modeled D<sup>3</sup>He-burn region agrees with data and is ~25% smaller than the DD-burn region



J. DeCiantis et al., CO1.11

F. H. Séguin et al., CO1.12

# The shape and size of modeled burn averaged D<sup>3</sup>He-profile agrees with data



J. DeCiantis et al., CO1.11

F. H. Séguin et al., CO1.12

Summary/Conclusions

First measurements of evolution of ion temperature during shock and compression burn have been performed at OMEGA

- Spatially averaged  $T_i(t)_{DD}$  is ~300 eV lower than  $T_i(t)_{D3He}$ .
- Shock-induced temperature is ~70% higher than the temperature during the compression.
- Size of D<sup>3</sup>He-burn region is ~25% smaller than the DD-burn region during the shock and the compression phase.
- This work suggests that the fuel is not isobaric during shock burn and later stages of compression burn.