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Optimization of layering geometry will be required
to eliminate ice layer nonuniformities

Summary

• 3-D target characterization is standard operating procedure
for OMEGA cryogenic targets.

• The D2 ice index of refraction has been identified as ~1.15.

• Relayering was observed upon rotation of target inside
the layering sphere.

– time constants (~ 15 to 25 min near triple point)

• Target rotation and relayering studies show ice layer
roughness dominated by external nonuniformities
in the layering and heating geometry.
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Reflection and refraction due to the ice layer produces
characteristic rings in shadowgraphs

Ring positions are determined by ice thickness, surface tilt, and index of refraction.

Shadowgraphic Analysis
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Shadowgraphs are unwrapped around the target center
to measure the Fourier modes of the rings and target surface

Unwrapped image intensity along radial lines was analyzed
to determine R(θ), ring/surface radius versus polar angle.
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Shadowgraphs are unwrapped around the target center
to determine Fourier modes of the rings and target surface

R(θ) analyzed to get Fourier power spectrum, Pn

Cryo-2042-314
2y16764 s6
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Accurate 3-D reconstructions for implosion
simulations require multiple views

3-D Ice Layer Characterization
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Low-order Legendre modes are determined by
a least-squares fit to spherical harmonics Y�m

Y�m reconstruction for �max = 9
(all �’s and m’s up to � = 9)
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• The maximum �-mode
is limited to � � 8 to
10 by the polar caps
and spacing of the
great circles.

• Great circle postitions
are mapped onto a
sphere.
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Higher-order Legendre modes are determined by
a mapping from the average Fourier components*
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Higher-order Legendre modes are determined by
a mapping from the average Fourier components*
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Higher-order Legendre modes are determined by
a mapping from the average Fourier components*

P
o

w
er

 s
p

ec
tr

u
m

 (
µm

2 )

Mode number

100

100 101 102

10–2

10–4

10–6

P�
• Average Fourier

components �Pn�
mapped* to
Legendre modes P�.

• Assumes isotropic
distribution of
perturbations.

*S. Pollaine and S. Hatchett, Nucl. Fusion 44, 117 (2004).

P� = a�n Pn
n=�

∞
∑



E13434d

Higher-order Legendre modes are determined by
a mapping from the average Fourier components*
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Multiple views allow some bright ring structures
to be uniquely related to target surface features

Features Can Be Studied Using Multiple Views
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Multiple views allow some bright ring structures
to be uniquely related to target surface features

Features Can Be Studied Using Multiple Views
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Multiple views allow some bright ring structures
to be uniquely related to target surface features

Features Can Be Studied Using Multiple Views

θMCTC = 145°

Glue spot
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CRYO-2038-015TAIL

These ring
structures are
due to surface
features and

should not be
included in ice

roughness
analysis.
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Multiple views allow some some ice
nonuniformities to be uniquely identified

Convex feature
on inner ice
surface closest
to camera
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Multiple views allow some some ice
nonuniformities to be uniquely identified

Convex feature
on inner ice
surface closest
to camera
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Multiple views allow some some ice
nonuniformities to be uniquely identified

Convex feature
on inner ice
surface closest
to camera
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Multiple views allow some some ice
nonuniformities to be uniquely identified

Convex feature
on inner ice
surface closest
to camera
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Multiple views allow some some ice
nonuniformities to be uniquely identified

Convex feature
on inner ice
surface closest
to camera
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Multiple views allow some some ice
nonuniformities to be uniquely identified

Convex feature
on inner ice
surface closest
to camera
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Multiple views allow some some ice
nonuniformities to be uniquely identified

Convex feature
on inner ice
surface closest
to camera
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Significant relayering occurs during a slow rotation
characterization followed by a return to normal

We have observed consistently different ring structures
at the same viewing angle before and after a 40-min set
of target rotations → relayering during rotation of the target.

Bright ring 2Y19358
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Significant relayering occurs during a slow rotation
characterization followed by a return to normal

We have observed consistently different ring structures
at the same viewing angle before and after a 40-min set
of target rotations → relayering during rotation of the target.

Bright ring 2Y19358
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Significant relayering occurs during a slow rotation
characterization followed by a return to normal

We have observed consistently different ring structures
at the same viewing angle before and after a 40-min set
of target rotations → relayering during rotation of the target.

Bright ring 2Y19358
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Relayering occurs with a 14 to 24 min
time constant after a 180° rotation

E13439

The standard deviation of difference between bright ring versus reference
ring (taken at 70 min) shows a smooth relaxation to “steady state.”
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Reliable 3-D characterization is maintained by fast “fan”
rotation to the imaging angle then back to home

• Quick rotations followed by annealing rests (∆t ≥ 20 min)

• The change is sufficiently small to allow determination
of the low-mode number Y�m components.
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The similarity between relaxed bright rings at all rotations
indicates the primary influence is external to the target

• Images taken after a 25 min
rest at many rotation angles.

• Ice layer relaxes to a
similar orientation with
respect to the external
layering-sphere geometry.

• Target shell thickness
and uniformity are not a
primary influence on layer
uniformity.
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Three-dimensional characterization is now
standard procedure for LLE cryogenic targets

• Automated shadowgraphic
analysis and 3-D
characterization

– bright ring identified
to ~0.1 pixel (0.12 µm)

• 3-D characterization yields
more detailed information
on ice layer roughness
and asymmetries
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There are several possible sources
of nonuniformity external to the target

• Layering sphere geometry

– breaks in spherical geometry due to windows and keyhole

– imperfect thermal contact between components

• Heating laser illumination

– hot spots may occur at point of first bounce

– sphere reflectivity not uniform due to damage
from use on OMEGA

• Reduction of layering sphere nonuniformities will be
needed to optimize ice layer quality
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Uniformity of illumination of the inside
of the layering sphere is not easily achieved

Half of the layering sphere Typical commercial gold diffusers
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Uniformity of illumination of the inside
of the layering sphere is not easily achieved
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Uniformity of illumination of the inside
of the layering sphere is not easily achieved
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The D2 ice index of refraction can be determined
by simultaneously analyzing multiple rings

b Most intense
(standard) ring

d
u

800

700

600

500

400

300

200

600 700 800

P
ix

el
s

Pixels

η = 1.13, δ = 77.6372

• Different rings depend differently on
the ice layer thickness and index of
refraction, ηD2.

• The bright ring typically fits only to the
ice thickness, assuming a fixed ηD2.

Additional Shadowgraphic Analyses

Previous estimate: ηD2 = 1.13 doesn’t
produce a good match to all the rings.
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Simultaneous fitting of multiple rings yields ηD2 ≈ 1.15

η = 1.1546, δ = 83.599
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• Fitting both ice thickness and ηD2
allows all rings to be matched.

• This results in a several percent
change in estimated ice thickness.

ηD2 = 1.15 at λ = 644 nm
produces a good

match to all the rings.
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Optimization of layering geometry will be required
to eliminate ice layer nonuniformities

Summary/Conclusions

• 3-D target characterization is standard operating procedure
for OMEGA cryogenic targets.

• The D2 ice index of refraction has been identified as ~1.15.

• Relayering was observed upon rotation of target inside
the layering sphere.

– time constants (~ 15 to 25 min near triple point)

• Target rotation and relayering studies show ice layer
roughness dominated by external nonuniformities
in the layering and heating geometry.




