Simulation of Enhanced Neutron Production
for OMEGA EP Cryogenic Implosions
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Summary

Interaction of the OMEGA EP beam with an imploding
cryogenic capsule significantly enhances neutron yield
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The OMEGA EP Laser will add a short-pulse (2.5 kdJ in 20 ps),
high-intensity beam (>1012 W/cm?2) to OMEGA to study
the physics of fast ignition.

The simulations were carried out with a range of realistic
electron sources.

Near stagnation, the relativistic electrons heat the cold fuel,
which explodes and creates a dense and hot core
that produces over 1012 neutrons.

Including alpha transport increases the yield by 50%.



Simulations were carried out for a 2.5-kJ, 1-um-wavelength

laser with a varying beam radius and FWHM
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e The electrons are transported parallel to the pole in a single time
step and lose energy according to a model by C. K. Li and R. D. Petrasso.*

—— *To be published in Phys. Rev. E



The electron source is a one-dimensional Maxwellian
distribution computed from the laser intensity
and a conversion efficiency
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TC6500¢ * 8. C. Wilks et al, Phys. Rev. Lett. 9, 1383 (1992).




A target and pulse were designed to reach
the pR needed to stop most electrons
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The electron pulse significantly increases the neutron

production in the hot core and the high density shell
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The heated shell explodes, producing a shock wave
that heats the core
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The neutron yield remains within a factor of two
in about a 100-ps range for the pulse timing
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The neutron yield is sensitive to the beam radius
but not to the pulse duration between 5 ps and 30 ps
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Simulations were carried out with illumination

nonuniformity due to power balance
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Simulation without electron beam; pR taken along the pole axis



Including alpha transport in the simulation increases
the yield by over 50%
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the same yields as the uniform case without alpha transport.
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Summary/Conclusions

Interaction of the OMEGA EP beam with an imploding
cryogenic capsule significantly enhances neutron yield
UR

TC6497

LLE

The OMEGA EP Laser will add a short-pulse (2.5 kdJ in 20 ps),
high-intensity beam (>1012 W/cm?2) to OMEGA to study
the physics of fast ignition.

The simulations were carried out with a range of realistic
electron sources.

Near stagnation, the relativistic electrons heat the cold fuel,
which explodes and creates a dense and hot core
that produces over 1012 neutrons.

Including alpha transport increases the yield by 50%.



