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Interaction of the OMEGA EP beam with an imploding
cryogenic capsule significantly enhances neutron yield

• The OMEGA EP Laser will add a short-pulse (2.5 kJ in 20 ps),
high-intensity beam (>1019 W/cm2) to OMEGA to study
the physics of fast ignition.

• The simulations were carried out with a range of realistic
electron sources.

• Near stagnation, the relativistic electrons heat the cold fuel,
which explodes and creates a dense and hot core
that produces over 1015 neutrons.

• Including alpha transport increases the yield by 50%.

Summary
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Simulations were carried out for a 2.5-kJ, 1-µm-wavelength
laser with a varying beam radius and FWHM

Beam radius:
5, 10, 20, 30 µm Pulse FWHM:

1, 5, 10, 20, 30 ps
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• The electrons are transported parallel to the pole in a single time
step and lose energy according to a model by C. K. Li and R. D. Petrasso.*

* To be published in Phys. Rev. E
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The electron source is a one-dimensional Maxwellian
distribution computed from the laser intensity
and a conversion efficiency

* S. C. Wilks et al, Phys. Rev. Lett. 9, 1383 (1992).

1-MeV electron distribution
with simulation grouping

Penetration depth
300 g/cm3, 5 keV
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T = 511 *[ (1 + I/1.47 × 1018)0.5 – 1] (keV) → slope of Maxwellian (from Wilks*)
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A target and pulse were designed to reach
the ρR needed to stop most electrons

Profiles in the
core at 3.96 ns
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The electron pulse significantly increases the neutron
production in the hot core and the high density shell
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The heated shell explodes, producing a shock wave
that heats the core
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The neutron yield remains within a factor of two
in about a 100-ps range for the pulse timing
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The neutron yield is sensitive to the beam radius
but not to the pulse duration between 5 ps and 30 ps

2.5 kJ, 50% efficiency, 3.94 ns pulse timing

Sensitivity to beam radius
(10 ps FWHM)
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Simulations were carried out with illumination
nonuniformity due to power balance

Simulation without electron beam; ρR taken along the pole axis
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Including alpha transport in the simulation increases
the yield by over 50%

Simulations with power balance and alpha transport give
the same yields as the uniform case without alpha transport.
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Interaction of the OMEGA EP beam with an imploding
cryogenic capsule significantly enhances neutron yield

• The OMEGA EP Laser will add a short-pulse (2.5 kJ in 20 ps),
high-intensity beam (>1019 W/cm2) to OMEGA to study
the physics of fast ignition.

• The simulations were carried out with a range of realistic
electron sources.

• Near stagnation, the relativistic electrons heat the cold fuel,
which explodes and creates a dense and hot core
that produces over 1015 neutrons.

• Including alpha transport increases the yield by 50%.

Summary/Conclusions


