The dependence of measured burn profiles on capsule and laser parameters

Joseph DeCiantis, et.al. Plasma Science and Fusion Center Massachusetts Institute of Technology 46th Annual Meeting of the Division of Plasma Physics November 15-19th, 2004 Savannah, Georgia

F. H. Séguin, J. A. Frenje, C. Chen, R. Rygg, C.K. Li, and R. D. Petrasso

Plasma Science and Fusion Center Massachusetts Institute of Technology

J. Delettrez, F. Marshall, D. D. Meyerhofer, S. Regan, S. Roberts, T. Sangster, and V. Smalyuk

Laboratory for Laser Energetics University of Rochester

K. Mikaelian, and H. Park

Lawrence Livermore National Laboratory

Measured burn radii reflect various implosion conditions

Summary

- Burn profiles show trends for
 - o different CH shell thicknesses.
 - o old and new drive conditions (SG3 vs SG4).
 - o different gas fill pressures.

• Burn profiles provide a test for simulations.

 Burn profiles will be used to study effects of mix on capsule performance.

Proton emission images are extracted from penumbral information

Aperture radius: 1000 µm

Information about the spatial distribution of burn is extracted from penumbral images in two ways*

^{*} Séguin et al., RSI 75, 3520 (2004)

The quality of the Proton Core Imaging System (PCIS) has been demonstrated

- On individual symmetric shots, compatible results are obtained from
 - **o** Three independent cameras at different angles.
 - o Different aperture sizes.
 - **o Different geometric magnification.**

Emission asymmetry mirrors asymmetric laser drive *

* Séguin et al., Oral presentation, this session

Measured burn radii increase with shell thickness

1D-hydro simulations show a similar trend

Changes have recently been made in laser drive

Measured burn radii are smaller with the NEW drive conditions

Low fill-pressure implosions have smaller burn radii

Constant convergence has been observed for various fill pressures

C. K. Li, Phys. Rev. Lett. 89, 165002 (2002)

Smaller burn radii may be caused by increased mix

Shell material

Mix region

Burn region

Smaller burn radii may be caused by increased mix

Smaller burn radii may be caused by increased mix

Measured burn radii reflect various implosion conditions

Summary/Conclusion

 Measured burn radii increase with increasing CH shell thickness.

• Measured burn radii indicate improved convergence with new drive conditions (SG4).

Burn radii measurements will be used to study mix.

