
Polar Direct Drive–Proof-of-Principle Experiments
on OMEGA and Prospects for Ignition on the NIF

R. S. Craxton
University of Rochester
Laboratory for Laser Energetics

46th Annual Meeting of the
American Physical Society
Division of Plasma Physics

Savannah, GA
15–19 November 2004



This work has been made possible
by many collaborators

F. J. Marshall
M. Bonino

J. A. Delettrez
R. Epstein

I. V. Igumenshchev
D. W. Jacobs-Perkins

J. P. Knauer
J. A. Marozas
P. W. McKenty

P. B. Radha
W. Seka

S. Skupsky



TC6643

Using polar direct drive (PDD), the prospects
for ignition on the NIF are very good

Summary

• Current SAGE/DRACO simulations of NIF PDD targets give
moderate gains.

• The Saturn design has the potential to give yields approaching 1-D gain.

• OMEGA PDD experiments have demonstrated close agreement
between the observed nonuniformity and SAGE predictions.

• The first Saturn PDD experiment on OMEGA has shown that
the ring can be used to change the drive uniformity.

See also: J. Soures (HO1.012)
R. Epstein (HO1.013)
J. Marozas (HO1.014)



TC6644

Outline

• Polar-direct-drive (PDD) concept for the NIF

– “Symmetric” target (uses 77° ports)

– “Standard PDD” target

• Standard-PDD experiments on OMEGA

• “Saturn” target for the NIF

• Saturn experiments on OMEGA



Sub 38, Runs 4533, 4056
TC6645

Polar direct drive entails repointing
the NIF laser beams toward the equator
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Runs 4533, 4056
TC6646a

The absorbed energy penalty for
polar direct drive is minimal
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Sub26
TC6180

For PDD on the NIF, the ring-4 beams are repointed
750 µm and use 2:1 elliptical phase plates (θpp = 60°)
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TC6647

Two hydrocodes are used
to model PDD implosions

• SAGE (fully self-consistent 3-D ray tracing) models
the implosion until the end of the laser pulse.

• The center-of-mass velocity perturbations are then
transferred to a DRACO simulation.

• DRACO (full burn physics) follows the implosion
through stagnation and calculates the yield.



Runs 4056, 3595
TC6648

At the end of the laser pulse (9 ns), the standard PDD
case is almost as uniform as the symmetric case
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Run 4056
TC6649

The SAGE velocity perturbations at the end of the laser
pulse are used to perturb a uniform DRACO simulation
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Run 4539
TC6650

The DRACO simulation near peak compression
is consistent with the imposed velocity perturbations
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TC6651

A DRACO simulation of a wetted-foam
PDD design gives a gain of ~10
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TC6644a

Outline

• Polar-direct-drive (PDD) concept for the NIF

– “Symmetric” target (uses 77° ports)

– “Standard PDD” target

• Standard-PDD experiments on OMEGA

• “Saturn” target for the NIF

• Saturn experiments on OMEGA



TC6523b

For the OMEGA PDD experiments,
forty beams irradiated the target while six beams
were used for backlighting
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Shot 34669
U435a

Gated backlit x-ray images show
a nearly symmetric target implosion
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Shot 34669
Run 4187
TC6531c

The experimental data follow the predicted center-of-mass
variations very closely at two successive times
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Shot 34669
Run 4184
TC6528

The shell trajectory, measured using streaked imaging
and framed x-ray radiography, is consistent
with 1-D LILAC and SAGE simulations
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TC6533

The core-stagnation symmetry is affected
by the illumination configuration

Time-integrated KB microscope images
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Run 4187
TC6652

The SAGE velocity perturbations at the end of
the laser pulse were transferred to DRACO
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Run 4187, a rad 4
Shot 34669
TC6653

DRACO contours at the time of peak neutron production
continue to show the � = 4 mode
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TC6644b

Outline

• Polar-direct-drive (PDD) concept for the NIF

– “Symmetric” target (uses 77° ports)

– “Standard PDD” target

• Standard-PDD experiments on OMEGA

• “Saturn” target for the NIF

• Saturn experiments on OMEGA



Sub 38, Run 4532
TC6654

The Saturn design results from an
optimization over many parameters
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Runs 4532, 4533, 4056
TC6655a

About 50% of the energy not absorbed by
the capsule is absorbed by the ring
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(a) Saturn
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Runs 4533, 4056, 4532=4341
TC6656

The uniformity at 9 ns for the Saturn target
is almost as good as for the symmetric target
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Runs 4532=4341
TC6657

The SAGE velocity perturbations
at 9 ns are transferred to DRACO
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Run 4532=4341
TC6658

The DRACO density and temperature profiles show some
low-mode structure at the onset of ignition
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TC6644c

Outline

• Polar-direct-drive (PDD) concept for the NIF

– “Symmetric” target (uses 77° ports)

– “Standard PDD” target

• Standard-PDD experiments on OMEGA

• “Saturn” target for the NIF

• Saturn experiments on OMEGA



TC6659

Saturn targets have been
shot on OMEGA



The ring plasma grows mainly in the second half of the
laser pulse and leads to the formation of a “bow shock”
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TC6661

A time-integrated x-ray pinhole camera image
(~2 to 5 keV) shows the bow shock

OMEGA shot 37430
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TC6771

The prolate core is seen most clearly in a KB
microscope image at higher photon energies
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Shot 37428-7,11,15
TC6662

Framing-camera backlit images show
increased drive on the equator

P6 view (26.6° above equator)
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Shot 37428
Run 4488, 4187
TC6860

The additional drive at the equator
for the Saturn target is greater than predicted
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TC6643a

Using polar direct-drive (PDD), the prospects
for ignition on the NIF are very good

Summary/Conclusions

• Current SAGE/DRACO simulations of NIF PDD targets give
moderate gains.

• The Saturn design has the potential to give yields approaching 1-D gain.

• OMEGA PDD experiments have demonstrated close agreement
between the observed nonuniformity and SAGE predictions.

• The first Saturn PDD experiment on OMEGA has shown that
the ring can be used to change the drive uniformity.

The PDD concept can be tested on the
NIF as soon as 192 beams are available

See also: J. Soures (HO1.012)
R. Epstein (HO1.013)
J. Marozas (HO1.014)



Sub39-1-11
TC6665

The standard PDD and Saturn designs require
reasonable Ring-4 pointing tolerances of ~ ±50 µm
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Sub39-1-12
TC6666

All three designs require reasonable Ring-4 pointing
tolerances of ~ ±50 µm based on center-of-mass variations
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TC6664

The neutron yield correlated with
the quality of the Saturn target
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Shots 34669, 37428
Run 4488
TC6663

The additional drive at the equator
for the Saturn target is greater than predicted
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Shot 34669
TC6526

Gated backlit x-ray images show
a nearly symmetric target implosion
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