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Strong shocks in wetted foam obey
the Rankine–Hugoniot jump conditions

• Plastic foam layers saturated with DT in NIF ignition target
designs have higher laser absorption and higher gains
than “all-DT” designs.

• Shock interaction with the foam microstructure generates
a mix region for the CH fibers and the DT fuel.

• The post-shock conditions quickly approach to within a few
percent of the Rankine–Hugoniot values, validating the
homogeneous approximation.
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Wetted foams have higher absorption, allowing higher gain
for stability comparable to all-DT designs

• A typical foam fiber spacing
is 0.2 µm.

• Wetted foam designs are
generally simulated using
an average mixture of the
CH and DT.

• Fiber-resolved simulations
are used to gauge effects
of microstructure on
shock propagation1.

1G. Hazak et al., Phys. Plasmas 5, 4357 (1998),
A. D. Kotelnikov and D. C. Montgomery, Phys. Fluids 10, 2037 (1998),

F. Philippe et al., Laser Part Beams 22, 171 (2004).
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The adaptive-mesh refinement code AstroBEAR
was used to model the fluid flow in wetted-foam layers

• AstroBEAR uses ideal-gas EOS, and has no radiation or heat transfer.

• AstroBEAR solves the (inviscid) Euler equations with material tracking.

• The inflow boundary condition models steady-state ablation.
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The adaptive-mesh refinement code AstroBEAR
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The inflow conditions used model the ablative boundary
condition in wetted-foam targets

• In an ICF wetted-foam target, the main shock reflects off the fibers,
sending shocks toward the ablation surface.

• These raise the post-shock pressure above the ablation pressure.

• When they reach the critical surface, a rarefaction wave is sent
into the target correcting this overpressure.

• The corrected pressure is simulated in the AMR simulations using
inflow conditions equal to the steady-state post-shock conditions
in the wetted foam.
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The DT and fiber materials are
efficiently mixed by the first shock

• The level of mixing can be gauged by tracking a single fiber.
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Fluctuations decay quickly behind the shock

• The decay rate is approximately the same for each mode.

• The decay rate does not change when the resolution is increased.
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• Simulation size 8 µm × 0.8 µm.
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The fluctuation decay scale length is ≤ 1.2 µm

• The ICF-relevant foam densities are large enough to provide increased
absorption, but small enough to minimize radiative preheat of the fuel.
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The fiber vortex pair interaction time scale
is determined by the foam density
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The flow variables asymptote to a few percent
of the Rankine–Hugoniot values

• From an 0.8 µm × 8 µm simulation:

• The ratio of the kinetic energy to total energy is 52% in the mix region.

• The shock speed is ~0.3% slower than the homogeneous shock speed.
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Strong shocks in wetted foam obey
the Rankine–Hugoniot jump conditions

• Plastic foam layers saturated with DT in NIF ignition target
designs have higher laser absorption and higher gains
than “all-DT” designs.

• Shock interaction with the foam microstructure generates
a mix region for the CH fibers and the DT fuel.

• The post-shock conditions quickly approach to within a few
percent of the Rankine–Hugoniot values, validating the
homogeneous approximation.

Summary/Conclusions




