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Planar experiments provide measurements of shock
propagation and timing for ICF target designs

• Use planar experiments to study/time multiple shocks
and to validate hydrodynamic simulations.

• Time-resolved velocity and self-emission profiles measure
behavior and timing of multiple shocks in CH and cryogenic
D2 targets.

• 1-D simulations with ray tracing simulate double-pulse
experiments in CH well.

• Self-emission provides shock-timing data even when VISAR
is compromised.

• Shock velocities can be measured during the pulse using
surrogate targets.

Summary
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Shock velocity and self-emission in double-shock
experiments are measured optically
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Simultaneous velocity and self-emission profiles
provide corroborative data
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Multi-pulse experiments on CH targets are well simulated
using a 1-D hydrocode with ray tracing
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Shock coalescence is readily detected
in self emission, even when VISAR blanks
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Coalescence time correlates with interpulse delay
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Prediction accuracy does not correlate with coalescence
time, but does with intensity
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Shock velocities can be measured during
the entire drive pulse using surrogate targets
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Velocity profiles from shaped pulses
are used to constrain models

10

15

20

25

30

35

0 1 2 3 4 6

Time (ns)

S
h

o
ck

 v
el

o
ci

ty
 (
µ

m
/n

s)

In
te

n
si

ty
 (

W
/c

m
2 )

1

2

5

Data
Sim. w/ ray trace
Sim 70% Int



E13401

Double-pulse experiments are used to
study shock timing for ICF target designs

• Use planar experiments to study/time multiple shocks
and to validate hydrodynamic simulations.

• Time-resolved velocity and self-emission profiles measure
behavior and timing of multiple shocks in CH and cryogenic
D2 targets.

• 1-D simulations with ray tracing simulate double-pulse
experiments in CH well.

• Self-emission provides shock-timing data even when VISAR
is compromised.

• Shock velocities can be measured during the pulse using
surrogate targets.

Summary/Conclusions




