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Summary

• The low-frequency energy principle1,2 is applied to resistive wall
modes.

• When all the kinetic species (alphas, ions, and electrons) are included,
the RWM growth is strongly reduced or fully suppressed in the low-
rotation regime for ITER-like plasmas.

1M. N. Rosenbluth and N. Rostoker, Phys. Fluids 2, 23 (1959).
2J. W. Van Dam, M. N. Rosenbluth, and Y. C. Lee, Phys. Fluids 25, 1349 (1982).

Marshall’s contribution to the kinetic-energy principle
has been instrumental in our understanding of the
interaction between particles and MHD modes
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Outline

• Marshall’s contribution to the low-frequency
energy principle.

• The low-frequency energy principle application
to wall modes.

• The qualitative picture of RWM interaction
with trapped particles.

• The PEST kinetic postprocessor and the RWM
stability in ITER-like plasmas.
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The trapped particle contribution to the macroscopic plasma
stability is included in the kinetic energy principle (KEP);
Marshall’s contribution to the KEP dates as early as 1959

• M. N. Rosenbluth and N. Rostoker [Phys. Fluids 2, 23 (1959)]; first
derivation of the kinetic energy principle from the solution of the
“transport” equation. Thermodynamic derivation in M. D. Kruskal
and C. R. Oberman [Phys. Fluids 1, 275 (1958)].

δW = δWF +δWK

δWK = − 1
2

dV δP� −δP⊥( )κ iξ+δP⊥∇ iξ⊥{ }∫

δP�,⊥ = 1
2

m d
�
v v�,⊥

2 δf( )trapped

⌠
⌡
⎮

δWKj ~ dVβj dΛτ̂bounce κ iξ 2
Λtrap

⌠
⌡∫

From the solution of the
Vlasov equation in the
limit of small Larmor
radius and ω >> ω*.

Positive-definite (stabilizing)
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The “slow” trapped-particle orbit-drift motion was not
included in the early formulations of the KEP

ωD = V∇B + Vκ[ ] i∇S

Precession or magnetic-
drift frequency

Precession motion of the
trapped-particle banana orbits

φ

ωD

ωD ~ Vth
R

rL
r

~ ∈ω*
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Van Dam, Rosenbluth, and Lee3 (1982) generalized
the energy principle to include the precession motion
of trapped particles

• The Rosenbluth–Rostoker (and Kruskal–Oberman) KEP was equivalent
to requiring that both the trapped-particle magnetic moment
and longitudinal action are conserved.

• Van Dam, Rosenbluth, and Lee3 recognized that if the mode frequency
ω << ωD, then the “magnetic flux passing through the precessional drift
orbit is adiabatically conserved.”

• The condition ω << ωD was easily satisfied for energetic particle species,
such as in the microwave-heated poloidal ring of 100 to 500 keV electrons
in the Elmo Bumpy Torus.

3J. W. Van Dam, M. N. Rosenbluth, and Y. C. Lee, Phys. Fluids 25, 1349 (1982).
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Using the third invariant connected with the fast
precession motion, Van Dam, Rosenbluth, and
Lee derive the generalized kinetic energy principle

δWKh ~ dVβh∫ dΛτ̂bounce κ iξ 2
Λtrap

⌠
⌡

ω*h
ωDh

Hot particle contribution for ω << ωDh

• A similar form of the KEP was derived independently
(submitted five months earlier) by T. M. Antonsen, Jr.,
B. Lane, and J. J. Ramos [Phys. Fluids 24, 1465 (1981)].

• This form of the KEP had extremely important applications
in Tokamak physics.
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The low-frequency KEP has improved our understanding
of Tokamak physics; fishbones, sawtooth suppression by
fast ions, and many resonant interactions with MHD modes

• When applied to the m = 1 internal kink, the KEP including fast
ions show the existence of a new branch with the frequency
~ωDh, which is destabilized by the hot-ion pressure (fishbones)
[L. Chen, R. B. White, and M. N. Rosenbluth, Phys. Rev. Lett. 52,
1122 (1984)].

• The same KEP also revealed the existence of stable regimes
for the m = 1 mode (sawtooth suppression by fast ions)
[Coppi et al., Phys. Rev. Lett. 63, 2733 (1989)].

• The KEP had many more applications, mostly in the area of
interaction between trapped particles and MHD modes [TAE
interaction: G. Y. Fu and C. Z. Chang, Phys. Fluids B 4, 3722
(1992); Energetic Particle Modes: S.-T. Tsai and L. Chen, Phys.
Fluids B 5, 3284 (1993)].
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The low-frequency energy principle
can also be applied to wall modes

γτW = − δWMHD
∞ + δWK

δWMHD
b + δWK

δWK = δWK
i + δWK

e + δWK
α

δWK = ℜ δWK[ ] + iℑ δWK[ ]

−δWMHD
b δWMHD

∞ > δWK
2 + ℜ δWK[ ] δWMHD

b + δWMHD
∞( )

Instability condition

MHD energy principle for RWM: S. W. Haney and
J. P. Freidberg, Phys. Fluids B 1, 1637 (1989).
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Without kinetic effects, the RWM is unstable
between the wall and no-wall beta limits

• Normalized RWM growth rate without kinetic effects.

βN
∞ = no-wall limits βN

b = wall limits

N
or

m
al

iz
ed

 g
ro

w
th

 r
at

e 
(γ

τ W
)

Fluid theory

Normalized beta (βN)

8

6

4

2

0

3.5 4.0 4.5 5.0



TC6823

Qualitative analysis of the instability
condition with kinetic effects

δWMHD
∞ ~ β∞ − β

δWMHD
b ~ βb − β

Instability drive
1

4
βb − β∞( )2

β∞ βb β∞ βb

β2

Stabilizing

Destabilizing

−δWMHD
b δWMHD

∞ > δWK
2 + ℜ δWK[ ] δWMHD

b + δWMHD
∞( )

0

β∞ βb

δWK ~ β X + iY( )
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Five regimes of RWM stability/instability

RWM Ideal kink mode

X
 =

 R
e

δW
K

(
)β

Y = Im δWK( ) β

β∞ βb

Full stabilization

β∞ β∞

βb βb

βbβ∞

βbβ∞

0

0

0

III II I

I
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Necessary condition for stabilization
requires relatively small δWK

δWMHD
∞ b ~ β∞ b − β

δWMHD
DriveInstability drive

δWK ~ β X + iY( )

Kinetic effects

δWK > 0.29 δWMHD
Drive ⇒ δWK

Minimum = β 0.08 + i0.28( )

• Kinetic stabilization enhanced for strong dissipation.
Full suppression for βb ~ 2 β∞ requires

δWK > 0.5β ⇒ δWK > 0.5 δWMHD
Drive

• Kinetic stabilization in the absence of dissipation
(Y = 0) requires X > 0.5:
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Low-frequency kinetic theory of the RWM: approximations

• RWM frequency: ω ~ 1/τW – 50/τW (τW = wall time)

• ω << ωD, ω*i ⇐ zero-mode frequency

– ωD magnetic-drift frequency

– ω*i ion-diamagnetic-drift frequency

• νeff << ωD, ω*i ⇐ collisionless ions (and electrons?)

• Ωrot ~ ω*i ⇐ quasi-stationary plasma

• For large rotation frequencies (Ωrot >> ω*i), the resonance with
the trapped-particle bounce motion becomes important.4,5
(Not included here)

• In the presence of sufficient dissipation, the wall mode
can be suppressed by fast rotation.6–9  (Not included here)

4A. Bondeson and M. S. Chu, Phys. Plasmas 3, 3013 (1996).
5Y. Liu et al., Nuc. Fusion 44, 232 (2004).
6A. D. Turnbull et al., Phys. Rev. Lett. 74, 718 (1995).
7A. Bondeson and D. J. Ward, Phys. Rev. Lett. 72, 2809 (1994).
8A. M. Garofalo et al., Phys. Plasmas 9, 1997 (2002).
9R. Fitzpatrick, Phys. Plasmas 9, 3459 (2002).
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A resonance occurs between the precession frequency
and the E × B Doppler-shifted mode frequency

ωDoppler
E ≡ ωDjε̂

ωDoppler
E ≡ ωLab −ωE

δWKj ~ dVβj∫ dΛτ̂bounceΛtrap
∫ κ iξ 2 Iε Λ,

�
r( )

ε̂ = ε
Tj

Iε = ε̂5 2e−ε̂
0
∞∫ ω*j ε̂ − 3 2( )+ωE

ωDjε̂ −ωDoppler
E

dε̂

Resonance condition
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Ions can resonate in the absence of plasma rotation

Mode-particle resonance:
Doppler-shifted frequency = magnetic-drift frequency

ωdoppler
E×B ≡ ωDi

ωdoppler
E×B ≡ ω − ωE×B ωE×B = −ωDi

Zero-frequency
approximation

ωE×B = Ωrot − ω*i

Ion-force balance equation

Ions can resonate in the
absence of plasma rotation

ΩωDi = ω*i − rot
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The strongest resonance comes from suprathermal
particles (Ωrot = 0 case)

Iε =
ε̂5 2e−ε̂ ε̂ − 5 2( )

ε̂
rω

−1
dε̂ = Ir + iIi

0

∞⌠

⌡

⎮
⎮
⎮

ε̂ = ε
Tj

ε̂res = rω ≡ ω*i

ωDi
th

~ 5 −8

rω = ε̂res

Large-aspect-ratio approximation

Ii

1086

10

5

0

15

Main
resonant
energies

420

Ii = πrω
7 2 rω − 5 2( )exp −rω( )
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Large-aspect-ratio ordering underestimates
the size of ion-kinetic terms

δWKi ωE <<ωD( )
δWFluid

~ ∈
δWKi ωE >>ωD( )

δWFluid
~∈3 2

δWKi ωE ~ 3 −8ωDi
th( )

δWFluid
> ∈

∈

δWKi

∈3 2 δWF

ωE = 0

Ωrot =ω*i

ωE = −ω*i
Ωrot = 0

ωE
ω*i

101.00.1

5

4
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2

1

0

7

6

∈3 2
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Electrons can resonate for Ωrot > ω*i; collisionality reduces
the resonant interaction but does not eliminate it

Collisionality Electron resonant contribution

Main
resonant
energies

νeff

ωE

elIres

ωE =ω*i
Ωrot = 2ω*i

ωE = 0.5 ω*i
Ωrot =1.5 ω*i

rω ≡ ω*i

ωDe
th

~ 5 −8, ε̂ = ε
Te
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0.0
0 8642 86420 10

Resonant energy → ε̂r = 0.5 rωResonant energy → ε̂r = rω
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0.0
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ωE
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In a burning plasma, nonresonant and resonant α particles
contribute to the stabilization

• In high-β plasmas, ωD can be significantly smaller than large-aspect-ratio
prediction → strong resonance can occur between ωE and ωDα

• Nonresonant contribution always stabilizing and enhanced by ratio

• α contribution is significant since ∇pα is large where the RWM eigenfunction
is large

ω*α ωDα >>1

δWKα ~ dV∫ Λtrap
∫ dΛτ̂bounce κ iξ 2 βα

ω*α
ωDα

�ε Λ,
�
r( )

Iε =
ε̂

ε̂ − ωE ωDα( )
dε̂

0

1⌠

⌡
⎮ ε̂ = ε

εα
.
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Analytic predictions are not reliable based on the variability
of ωD, with respect to ωE (drift reversal, rotation profile,
eigenfunction shape); quantitative assessment requires
a stability code

δWMHD
∞

δWMHD
b

PEST6

ξ

δWK = δWK
i +δWK

e +δWK
α

• ξ from PEST is used to compute

γτw = −δWMHD
∞ +δWK

δWMHD
b +δWK

• The RWM energy principle is used
to compute the RWM growth rate.

6S. Preische, J. Manickam, and J. L. Johnson, Comput. Phys. Commun. 76, 318 (1993).
  R. C. Grimm, J. M. Greene, and J. L. Johnson, Methods Comput. Phys. 16, 253 (1976).
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The RWM plasma-eigenfunction ξ is approximated by the
ideal-MHD ξ from PEST for marginally stable wall position

β∞ β βb

• For each equilibrium with β∞ < β < βb, the wall is moved
closer to the plasma until marginal stability is reached.

• Since the RWM is essentially zero frequency,
the corresponding plasma eigenfunction computed with
PEST is used to approximate the RWM eigenfunction.

• Such an eigenfunction is used to compute fluid and
kinetic contributions to δW.



The RWM stability of an ITER-advanced Tokamak
scenario is studied using a symmetrized plasma
and conforming wall
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Symmetrized ITER plasma Conforming walls
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Most of the kinetic contribution is produced
within the q = 3 surface
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The growth of the RWM is strongly reduced or fully
suppressed by the kinetic effects in slow-rotating
ITER-like plasmas

• RWM normalized growth rate with and without kinetic
effects and varying plasma rotation frequencies Ω(0).
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The low-frequency energy principle1,2 applied to wall
modes shows the possibility of RWM growth reduction/
suppression at low rotation frequencies

Summary/Conclusions

• Marshall’s contribution to the kinetic-energy principle has been
instrumental in our understanding of the interaction between
particles and MHD modes.

• The low-frequency energy principle is applied to wall modes.

• When all the kinetic species (alphas, ions, and electrons) are
included, the RWM growth is strongly reduced or fully suppressed
in the low-rotation regime for ITER-like plasmas.

1M. N. Rosenbluth and N. Rostoker, Phys. Fluids 2, 23 (1959).
2J. W. Van Dam, M. N. Rosenbluth, and Y. C. Lee, Phys. Fluids 25, 1349 (1982).


