

Ablative RT growth rate $\gamma_{DT} = 0.94\sqrt{kg} - 2.7 kV_A$

R. Betti and J. Sanz University of Rochester Laboratory for Laser Energetics 46th Annual Meeting of the American Physical Society Division of Plasma Physics Savannah, GA 15–19 November 2004

Summary

While stabilizing in the linear phase, mass ablation is destabilizing in the nonlinear regime

UR 火

- The nonlinear evolution is studied using the theory of Sanz, Ramirez, Ramis, Betti, Town, Phys. Rev. Lett. <u>89</u>, 195002 (2002) and detailed 2-D simulations.
- A finite amplitude instability develops for modes with k > k_{cutoff}.
- Unstable modes with 1/2 $k_{cutoff} k < k_{cutoff}$ exhibit a nonlinear growth faster than linear.
- The saturation amplitudes of modes with 1/2 k_{cutoff} k < k_{cutoff} is larger than 0.1 $\lambda.$
- The generation of long-wavelength modes by coupling of short wavelengths is much greater than predicted by the classical theory.
- The asymptotic bubble velocity is larger than classical (upcoming talk by C. Zhou, JO1.003).

Linearly stable modes with k > k_c can be unstable for finite initial amplitudes

The theory predicts full nonlinear stability only for wave numbers exceeding a nonlinear cutoff beyond the linear cutoff

For 1/2 k_{C} < k < k_{C} the theory predicts a nonlinear exponential instability and a saturation amplitude larger than 0.1 λ

UR

The fixed boundary code ART is used to study the detailed evolution of the Rayleigh–Taylor instability

LLE

The simulations show the development of the nonlinear exponential growth near the linear cutoff in agreement with the nonlinear theory

Nonlinear growth rate ~ $0.1 - 0.2 \gamma_{clas}$ ~ max [γ_{abl}]

A linearly stable perturbation $(k > k_{cutoff})$ becomes unstable for a sufficiently large initial amplitude (as predicted by theory)

The quasi-linear generation of long wavelengths is much greater than predicted by the classical theory

Summary/Conclusions

While stabilizing in the linear phase, mass ablation is destabilizing in the nonlinear regime

- A finite amplitude instability develops for modes with k > k_{cutoff}.
- Unstable modes with 1/2 $k_{cutoff} k < k_{cutoff}$ exhibit a nonlinear growth faster than linear.

UR 🔌

- The saturation amplitudes of modes with 1/2 k_{cutoff} k < k_{cutoff} is larger than 0.1 $\lambda.$
- The generation of long-wavelength modes by coupling of short wavelengths is much greater than predicted by the classical theory.
- The asymptotic bubble velocity is larger than classical (upcoming talk by C. Zhou, JO1.003).