Timing of Multiple Shocks in Planar Direct-Drive Laser-Driven Targets

Collaborators

T. R. Boehly, R. S. Craxton, V. N. Goncharov, J. P. Knauer, D. D. Meyerhofer, J. E. Miller, and T. C. Sangster

> Laboratory for Laser Energetics University of Rochester

D. G. Hicks and P. M. Celliers Lawrence Livermore National Laboratory Summary

Double-pulse experiments are used to study shock timing relevant to direct-drive ICF targets

- Time-resolved shock velocity and self-emission are measured in planar CH targets at various conditions:
 - shock catch-up
 - shock breakout
 - two-dimensional effects
- One-dimensional simulations show good agreement with measured velocity profiles.
- Two-dimensional effects are observed; these and coupling efficiency will be studied further.

Preheat prevents diagnosis of shock velocity during the laser pulse

Shock timing and coupling efficiency are studied with two pulses and different angles

E12373

Catch-up occurs earlier for slower shocks produced by lower intensities

UR

Lower coupling efficiency at higher angles of incidence reduces observed shock speeds

LILAC simulations of planar double-pulse experiments show good agreement with observed shock-velocity profiles

Shots: 32215 & 32216 E12536

Simultaneous velocity and self-emission profiles provide data on two-dimensional behavior

Curvature of catch-up feature depends on irradiation incidence angle

UR 🔌

LILAC simulations of planar double-pulse experiments show good agreement with observed shock catch-up and breakout times

Summary/Conclusions

Double-pulse experiments are used to study shock timing relevant to direct-drive ICF targets

- Time-resolved shock velocity and self-emission are measured in planar CH targets at various conditions:
 - shock catch-up
 - shock breakout
 - two-dimensional effects
- One-dimensional simulations show good agreement with measured velocity profiles.
- Two-dimensional effects are observed; these and coupling efficiency will be studied further.