Experimental Investigation of the Two-Plasmon Decay Instability at Oblique Incidence UR 🔌 LLE 100 (x-ray signal, arbitrary units) HXRD2 10 **\$** 5 6 8 7 3 4 Overlapped-interaction-beam intensity (10¹⁴ W/cm²) 45th Annual Meeting of the **American Physical Society Division of Plasma Physics** W. Seka **University of Rochester** Albuquerque, NM

Laboratory for Laser Energetics

27-31 October 2003

C. Stoeckl, A. V. Maximov, R. S. Craxton, R. W. Short, S. P. Regan, J. Myatt, and R. E. Bahr University of Rochester Laboratory for Laser Energetics

> H. Baldis University of California, Davis and Lawrence Livermore National Laboratory

> > S. Depierreux CEA, France

Summary

The two-plasmon decay (TPD) instability exhibits weak angular dependence as evidenced by hot-electron preheat

UR 👐

- Angular dependence of TPD is of interest to polardirect-drive-ignition experiments.
- Hard x-ray signals measure hot-electron preheat.
- Experiments involved six interaction beams incident on performed plasmas.
- TPD threshold appears lower at higher angles of incidence.
- Preheat efficiency (preheat energy/laser energy) is independent of angle.

- Motivation
- Experimental arrangement
- Hard-x-ray data
- Conclusions

Motivation

Recent experiments have shown consistent fast-electron generation and sensitivity to overlapped-beam intensities

2 to 6 beams (23°), long-scale-length plasmas

Polar direct drive* (PDD) allows directly driven implosions on the NIF with indirect-drive beam geometry

Preformed plasmas are irradiated with six beams at various angles of incidence

- Beam angles and overlapped intensities:
 - 23° (6 × 10¹⁴), 48° (4.2 × 10¹⁴), 62° (3 × 10¹⁴ W/cm²)
 - All other beams defocused (I_{beam} < 3×10^{13} W/cm²)

Hard-x-ray detector (>50 keV) has been shown to yield reliable relative preheat measurement

 Four edge-filtered photomultipliers sample E_x > 50 to 200 keV with time resolution.

UR 🔌

- Cross-calibrating with absolute ${\rm K}_{\alpha}$ measurements has demonstrated that absolute preheat levels can be determined.

The two-plasmon-decay instability appears to have a lower threshold for higher angles of incidence

• Beam conditioning: phase plates, polarization smoothing, no bandwidth.

The observed angular dependence of the hot-electron production may have several causes

- Effective density gradient at oblique incidence
- Electric field swelling near turning point
 - Appears to overestimate observed angular dependence
- Other?

The preheat efficiency shows no discernible angular dependence between 23° and 48° $\,$

$$I = \frac{E_L}{A\tau_L}$$
, A = beam area on target

Fast-electron-preheat efficiencies depend weakly on different on-target intensity distributions (phase plates) and bandwidths

The significantly different intensity distributions can explain different levels of electron preheat from the TPD instability

The two-plasmon decay (TPD) instability exhibits weak angular dependence as evidenced by hot-electron preheat

UR 👐

- Angular dependence of TPD is of interest to polardirect-drive-ignition experiments.
- Hard x-ray signals measure hot-electron preheat.
- Experiments involved six interaction beams incident on performed plasmas.
- TPD threshold appears lower at higher angles of incidence.
- Preheat efficiency (preheat energy/laser energy) is independent of angle.