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E12560

Measured microdot line ratios cannot be explained
consistently with existing post-processed
1-D hydro simulations

• Coronal plasmas were produced with a high-intensity
(3 ¥ 1014 W/cm2), 100-ps Gaussian pulse.

• Time-resolved x-ray spectroscopy was used to measure
K-shell emission from Al and KCl microdot tracer layers.

• Line ratios were predicted with the 1-D hydrodynamics code
LILAC and the time-dependent atomic physics code FLY1

and compared with the measured ratios.

• Future modeling will be performed with 2-D hydrocode
simulations post-processed with time-dependent
SPECT 3D.2

Summary

1 R. W. Lee et al., JQSRT 1996; 56:535-56.
2 Prism Computational Sciences, Inc., Madison, WI.
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E12561

Plastic targets with buried microdots were
irradiated with a 100-ps Gaussian pulse

• Microdots were buried at different depths to probe the corona at different times.

Buried depth = 0.1, 0.3, 0.5 mm
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E12562

Time-resolved x-ray spectroscopy was used to record
K-shell emission from ablated microdots

• Streaked spectra were calibrated with time-integrated
x-ray spectrometers.

• Measured line ratios K Heb/CI Heb and Al Lyb/Heb are
compared with simulations.
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Te and ne time histories of the ablated microdot were
simulated with LILAC for three coronal conditions

KCI microdot buried at 0.1 mm
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Shot 31676:
Trailing edge
Leading edge

1 R. W. Lee et al., JQSRT 1996; 56:535-56E12564

Hydrocode predictions were post-processed with the time-
dependent atomic physics code FLY1 to predict line ratios

• The 0-D code FLY can post-process a single zone from LILAC.
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KCI microdot buried at 0.1 mm
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Measured K Heb /Cl Heb ratio for a KCI microdot buried
at 0.1 mm is similar to ratio of lower absorption model

f = 0.06, half
absorbed energy
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Measured K Heb /Cl Heb ratio for a KCI microdot buried
at 0.3 mm shows some agreement early in time with lower
absorption model and late in time with f = 0.06
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Early-time discrepancy is observed between measured
ratio and models for a KCI microdot buried at 0.5 mm
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1

• Early burnthrough is not observed for Al microdot.

800

Measured Al Lyb /Heb ratio for microdot buried at
0.5 mm is consistent with the f = 0.06 or f = 0.04 model
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E12560

Measured microdot line ratios cannot be explained
consistently with existing post-processed
1-D hydro simulations

• Coronal plasmas were produced with a high-intensity
(3 ¥ 1014 W/cm2), 100-ps Gaussian pulse.

• Time-resolved x-ray spectroscopy was used to measure
K-shell emission from Al and KCl microdot tracer layers.

• Line ratios were predicted with the 1-D hydrodynamics code
LILAC and the time-dependent atomic physics code FLY1

and compared with the measured ratios.

• Future modeling will be performed with 2-D hydrocode
simulations post-processed with time-dependent
SPECT 3D.2

Summary/Conclusions

1 R. W. Lee et al., JQSRT 1996; 56:535-56.
2 Prism Computational Sciences, Inc., Madison, WI.


