Experimental studies of time-dependent mix in OMEGA direct-drive implosions

J.R. Rygg et al. MIT - PSFC 45th American Physical Society DPP Meeting Albuquerque, NM, Oct 27-31, 2003

Collaborators

J.A. Frenje, C.K. Li, F.H. Séguin, and R.D. Petrasso

Plasma Science and Fusion Center Massachusetts Institute of Technology

J.A. Delettrez, V.Yu Glebov, D.D. Meyerhofer, T.C. Sangster, J.M. Soures, and C. Stoeckl

Laboratory for Laser Energetics University of Rochester

D.C. Wilson

Los Alamos National Laboratory

J.R. Rygg et al. MIT - PSFC 45th American Physical Society DPP Meeting Albuquerque, NM, Oct 27-31, 2003

Summary

- Measurement of D³He burn history opens new windows on capsule dynamics during the deceleration phase, including:
 - T_i
 - n_{fuel}
 - ρR
 - r_{shell}
 - V_{shell}
 - a_{shell}
- These inferred histories are being used to construct a self consistent picture of mix dynamics

D-³He filled capsule implosions will emit 14.7 MeV protons

 $D + {}^{3}He \Rightarrow \alpha(3.6) + p(14.7 \text{ MeV})$

D-³He protons are emitted when the fuel gets sufficiently hot

There are typically two peaks in the D-³He burn history

T_i evolution can be inferred from the ratio of DD and D³He burn histories

ρR(t) can be inferred by combining D³He burn history with the measured D³He proton spectra

r(t) can be inferred from pR(t)

r(t) will give us n_{fuel}(t)

³He-filled, CD shelled capsules make an excellent probe of fuel-shell mix

 $D + {}^{3}He \Rightarrow \alpha(3.6) + p(14.7 \text{ MeV})$

D-³He protons are emitted when the fuel gets sufficiently hot

D-³He protons are emitted *only* when there is mixing of the fuel and the shell on the atomic level.

There is no shock burn in the burn history of ³He filled capsules

Mixed region will not converge faster than the free-fall trajectory

Using the shell acceleration, we can better estimate the amount of mix

Empirical, dynamic mix model

- Estimate the size of the mixed region using a(t)
- Calculate the D³He proton production rate:

$$protons(t) = \int_{mix_region(t)} n_D(t) n_{_{3}He}(t) \langle \sigma v(T_i(t)) \rangle 4\pi r^2 dr$$

Check that this calculated proton rate is consistent with the measured proton rate

Preliminary results from this empirical mix model look promising

Summary

- Measurement of D³He burn history opens new windows on capsule dynamics during the deceleration phase, including:
 - T_i
 - n_{fuel}
 - ρR
 - r_{shell}
 - V_{shell}
 - a_{shell}
- These inferred histories are being used to construct a self consistent picture of mix dynamics