Utilizing Shock Burn to Study Omega Capsule Dynamics When Mix is Insignificant

Contributors

J.R. Rygg, J.A. Frenje, C.K. Li, and F.H. Séguin

Plasma Science and Fusion Center Massachusetts Institute of Technology

J.A. Delettrez, F.J. Marshall, V.Yu. Glebov, V.N. Goncharov, R.L. Keck, J.P. Knauer, P.W. McKenty, D.D. Meyerhofer, T.C. Sangster, V.A. Smalyuk, J.M. Soures, and C. Stoeckl

Laboratory for Laser Energetics University of Rochester

S. Hatchett

Lawrence Livermore National Laboratory

Related Talks:

• J.A. Frenje - Fl2.004

V.Yu Glebov - UP1.007

Summary

- D³He burn rate is a new, sensitive window for studying capsule dynamics at shock burn
- From D³He shock bang, an accurate estimate is obtained of the coupling between the radiation drive and the imploding capsule
- During the shock burn, capsule burn dynamics are largely free of mix, and clean simulations will be at their best
- Shock burn determines several experimental quantities that are readily contrasted to simulations:
 - 1. Shock bang
 - 2. Shock duration and burn history
 - 3. Shock yield

The strong T dependence of D³He reactions sensitively amplifies the shock burn

Minimal mix occurs during shock burn

1-D LILAC is compared to D³He burn data

At shock burn there are 3 discrepancies between experiment and LILAC

Increasing the ion-electron coupling in LILAC at shock burn reduces all discrepancies

- Simulated yield:
 ~ 3 times experiment
- Simulated burn width: matches experiment
- Simulated burn: quenches

Interestingly, enhanced coupling also simulates the data better for compression burn

Summary

- D³He burn rate is a new, sensitive window for studying capsule dynamics at shock burn
- From D³He shock bang, an accurate estimate is obtained of the coupling between the radiation drive and the imploding capsule
- During the shock burn, capsule burn dynamics are largely free of mix, and clean simulations will be at their best
- Shock burn determines several experimental quantities that are readily contrasted to simulations:
 - 1. Shock bang
 - 2. Shock duration and burn history
 - 3. Shock yield