Intense Electron-Beam Transport in Dense, Cryogenic, DT, Fast-Ignition Fusion Targets

J. Myatt, A. V. Maximov, R. W. Short, J. A. Delettrez, and C. Stoeckl Laboratory for Laser Energetics University of Rochester 45th Annual Meeting of the American Physical Society Division of Plasma Physics Albuquerque, NM 27–31 October 2003

Summary

The PIC/hybrid approach is a promising technique for modeling electron transport in very overdense plasmas

- Two- and three-dimensional simulations of fast (1-MeV) electron beams have been made in imploded cryogenic fusion targets.
- The PIC/hybrid approach (LSP^{*}) has several advantages over traditional PIC that allow large volumes of plasma to be simulated.
- A self-generated azimuthal magnetic field collimates the electron beam in 2-D, but not in 3-D.
- We observe filamentation of the beam current in both 2-D and 3-D.
 - Filamentation is shown to depend on the background plasma density and beam temperature.
- The target is primarily heated by the return current for the chosen conditions.

We treat the fast-electron transport but not the generation mechanism

Large contrast in plasma density

Electron-beam parameters are relevant to future fast-ignition studies on OMEGA EP

- An electron beam is generated by promotion from background over a 20- μ m spot with a pulse duration of 10 ps.
- FI-relevant parameters are chosen for the beam source

$$n_b = 2 \times 10^{20} \eta_{eff} \frac{I}{10^{19} \text{W cm}^{-2}} \frac{1 \text{ MeV}}{\epsilon_b} \text{ cm}^{-3}$$

- Unlike simulations in near-critical plasmas, the beam is "weak" in the sense that $n_b/n_e << 1$

$$\begin{split} \mathbf{I}_{b} &= \mathbf{30} \ \eta_{eff} \ \frac{\mathbf{I}}{\mathbf{10^{19} W cm^{-2}}} \ \frac{\mathbf{A}_{spot}}{\mathbf{300 \ \mu m^{2}}} \left(\frac{\mathbf{1 \ MeV}}{\epsilon_{b}} \right) \mathbf{MA} \\ \mathbf{I}_{b} &>> \mathbf{I}_{Alfvén} = \mathbf{17} \gamma \beta \ \mathbf{kA} \end{split}$$

• Self-generated fields are therefore important for transport.

In 2-D, r-z geometry, the electron beam breaks into filaments and contracts radially

In three dimensions the electron beam breaks up into filaments

200 _ n_b (cm^{_3}) 10²⁰ $n_{e} (cm^{-3})$ 20 10²⁵ 1022 **Υ** (μm) 0 150 -20 (**m**ḿ) **Z** 10¹⁸ 100 1020 10²³ n_e (cm⁻³) 20 **Υ (μm)** 50 0 Background plasma -20 $n_b (cm^{-3})$ **10**¹⁸ 1022 0 -40 40 0 20 0 -20 **Χ** (μ**m**) **Χ** (μ**m**)

Homogeneous simulations show that beam filamentation depends on the plasma density

The filaments are smoothed-out in the high density shell

200 (\mathbf{A}) n_b (cm⁻³) **10**²⁰ $n_e (cm^{-3})$ 20 10²⁵ 1022 **Υ** (μm) 0 150 Α -20 **Z** (μm) 1018 100 1020 **(B**) В _ n_b (cm^{_3} 10²⁰ 20 **Υ (μm) 50** 0 Background plasma $n_b (cm^{-3})$ -20 1018 **10**¹⁸ 0 -40 0 40 -20 0 20 \boldsymbol{X} ($\mu \boldsymbol{m}$) \boldsymbol{X} ($\mu \boldsymbol{m}$)

Filamentation is suppressed by a large beam "temperature"

High temperature Low temperature $T_b = 10 \text{ keV}$ T_b = 200 keV 200 150 1020 1020 (**m**ḿ) **Z** 100 **10**¹⁸ 1018 50 $n_b (cm^{-3})$ 0 40 -40 40 -40 0 0 \boldsymbol{X} ($\mu \boldsymbol{m}$) **Χ** (μ**m**)

Summary/Conclusions

The PIC/hybrid approach is a promising technique for modeling electron transport in very overdense plasmas

- Two- and three-dimensional simulations of fast (1-MeV) electron beams have been made in imploded cryogenic fusion targets.
- The PIC/hybrid approach (LSP^{*}) has several advantages over traditional PIC that allow large volumes of plasma to be simulated.
- A self-generated azimuthal magnetic field collimates the electron beam in 2-D, but not in 3-D.
- We observe filamentation of the beam current in both 2-D and 3-D.
 - Filamentation is shown to depend on the background plasma density and beam temperature.
- The target is primarily heated by the return current for the chosen conditions.