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The OMEGA cryogenic implosion campaign is a staged
program leading to verification of scaled-ignition
performance with DT fuel by the end of FY05

• The program is driven by three main objectives:

– Validation of target performance for the lowest effective adiabat

– Minimization and absolute characterization of DT cryogenic-layer
roughness

– Use of cryogenic DT targets in OMEGA implosion
experiments
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Recent improvements in critical areas of direct-drive
uniformity have OMEGA beginning to demonstrate
scaled-ignition performance of cryogenic implosions

• Adiabat-shaping techniques allow the fielding of lower-adiabat-
implosion experiments on OMEGA.

• Extensive research and development have produced ice-layer
finishes approaching the 1-mm NIF requirement.

• The cryogenic DT Fill and Transfer Station (FTS) is currently being
qualified, and DT layering and fractionation studies will commence
by the end of FY04.

Summary

For targets at TCC, 2-D DRACO simulations agree
with experimental observations.
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Cryogenic target implosions require significant
engineering and development

• Cryogenic implosions have been carried out on OMEGA for ~3 years.

• Significant obstacles have been overcome:
– cryogenic target transport
– target survival
– target-layer survival

• Target vibration at shot time has been minimized.

Bottom line: Fielding cryogenic
targets is very difficult and
requires a lot of time and effort.
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Direct-drive ICF has traditionally traded target
performance for increased hydrodynamic stability

Hydrodynamic and laser–plasma instability
constraints will determine the performance
of NIF ICF capsule implosions.
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OMEGA cryogenic implosion campaign is examing scaled-
ignition NIF target designs employing two ablator concepts

“All-DT” “Wetted-foam”
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Initial cryogenic implosion experiments use
high-adiabat pulses to probe the effect of ice roughness
on target performance
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2-D DRACO accurately predicts performance and core
conditions for shot 33599 (a ~ 25)
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Comparisons between experimental results
and 2-D DRACO simulations demonstrate good
agreement for high-adiabat implosions

1.0

0.8

0.6

0.4

0.2

0.0

Y
O

C

0 121086
rms ice roughness (mm)

modes l = 1 to 16

42

28900 (14 mm)

DRACO
(no offset)

33599 (22 mm)

33603 (29 mm)

33413 (42 mm)

20-mm
offset

40-mm
offset

33688 (40 mm)

300 mm

Shot 33413



Research at GA has produced a variety of dry foams
for ICF implosion experiments on OMEGA
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Accurate modeling of shock transit is critical
in the design of wetted-foam ignition targets

• 1-D and 2-D simulations of wetted-foam designs generally assume
a homogeneous mixture for the wetted-foam layer.

• Does this assumption change the simulated shock speeds?

AMRCLAW 1 simulation of shock transit
through a wetted-foam matrix

1Adam Frank, University of Rochester, Department of Physics and Astronomy
Reference: http://www.pas.rochester.edu/~afrank/theory/index.html
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The higher shock speed in DT more than
compensates for the lower shock speed in CH

Despite the slow shock speed in the
fiber, the average shock speed is
greater than in a homogeneous mixture:
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First OMEGA cryogenic wetted-foam target implosion
demonstrated the highest cryogenic neutron yield
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Experiment:
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The second phase of the OMEGA cryogenic implosion
campaign examines ignition-scaled targets at lower adiabats
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2-D DRACO demonstrates good agreement in predicting
target performance for shot 33600 (a ~ 4)
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A stability analysis* of the a = 4 design defines the ignition-
scaling performance window for cryogenic implosions

* P. McKenty et al., Phys. Plasma 8, 2315 (2001).

• The NIF gain* and OMEGA yield can be related by

s2 = 0.06sl<10
2 + sl�10

2 ,
where the sl’s are the rms amplitudes at the end of the acceleration phase.
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Scaling gain with    allows the formation of a global
nonuniformity budget for the direct-drive point design
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Adiabat shaping is achieved using a high intensity picket1

• t = 0 Picket creates a strong shock.
• t = tp Rarefaction wave (RW) is

launched at t = tp.

• t = tRW RW meets the shock.
• t > tRW Shock strength decreases in time.

For DT foils:2 g = 0.94 kg - 2.6 kVa , where Va ~ a3/5.
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1 V. N. Goncharov et al., Phys. Plasmas 10, 1906 (2003).
2 R. Betti et al., Phys. Plasmas 5, 1446 (1998).
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Direct-drive target stability is dramatically
improved when adiabat shaping is applied

The benefit of pickets has been confirmed in NRL
and LLNL simulations.
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Picket results have led to lower-adiabat,
OMEGA scaled-ignition designs
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A series of 2-D DRACO runs are compiled to obtain
s scaling for the a = 2p design

TC6461

rms beam mistiming (ps)
with 1%-rms energy balance

• Simulations done with
uniform laser beams
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With the advent of adiabat shaping and improved ice-layer
finishes, lower-adiabat implosions can now be fielded with
confidence on OMEGA
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Addition of picket leads to similar stability
and performance for lower-adiabat implosions.
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Recent D2-ice layers with IR heating are approaching
the NIF 1-µm rms requirement

930-µm-diam OMEGA cryo target with
100-µm-D2-ice layer and 3.5-µm-CH shell
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Accurate three-dimensional reconstructions
for simulations require many sampling traces

• Surface position is mapped
onto sphere.

• Data are smoothed.
• Information for low-order modes

is provided.
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Causes of ice roughness have been identified
and are being addressed

+xΩ

• Keyhole area is 2% of layering sphere.
• Refraction causes nonuniform heating

that induces low-mode roughness.
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* M. Wozniak, Summer High School Project Report, 2003
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New D2 Fill and Transfer Station (FTS) under construction
will provide concurrent DT and D2 cryogenic operations
in late FY04

• Targets (4) are filled
and characterized.

• Filling and cooling
targets requires 66 h.

• Layering requires 24 h.
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Slow solidification produces the smoothest deuterium ice layers
but increases the possibility of fractionation in D2-DT-T2 mixtures

D2–rich

 T2–richT = 19.78 K

 T2
DT

D2

T = 19.83 K

Q = 13 mW

Liq. D2-DT-T2

Boundary
condition
T = 19.05 K

Diffusion coefficients for liquid hydrogen isotopes are high ~ 5 ¥ 10–9 m2/s
at ~ 20 K, eliminating D2-DT-T2 concentration gradients in the liquid and
allowing preferential T2 redistribution.

Resulting ice layer

DT–
rich

(if fractionation occurs)

D2 = 18.72 K

DT = 19.79 K

T2 = 20.62 K

Triple point
Vap. press. (Pa)
at 19.79 K

2930

2200

1580

During solidification



A spectroscopic probe using a laser diode will provide
experimental confirmation of the existence or absence
of D2-DT-T2 fractionation
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Recent improvements in critical areas of direct-drive
uniformity have OMEGA beginning to demonstrate
scaled-ignition performance of cryogenic implosions

• Adiabat-shaping techniques allow the fielding of lower-adiabat-
implosion experiments on OMEGA.

• Extensive research and development have produced ice-layer
finishes approaching the 1-mm NIF requirement.

• The cryogenic DT Fill and Transfer Station (FTS) is currently being
qualified, and DT layering and fractionation studies will commence
by the end of FY04.

Summary/Conclusions

For targets at TCC, 2-D DRACO simulations agree
with experimental observations.




