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Optimized pulse shapes compensate 2-D effects
due to nonuniform beam incident angles

• PDD enables direct-drive ignition experiments while the NIF
is in the x-ray drive configuration.

• The 48 quads are logically grouped into three rings based
on their incident angles: 26∞, 59∞, and 82∞.

• Rings with different incident angles lead to variations around
the target.

– laser absorption

– hydrodynamic efficiency

– lateral heat and mass flow

• A nonlinear optimization algorithm within a feedback loop
generates compensated ring pulse shapes.

Summary
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Outline

• Description of ray-trace algorithm

• Description of feedback loop

• Description of target and 2-D DRACO simulation results
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PDD enables direct-drive-ignition experiments
while the NIF is in the x-ray-drive configuration

Caveats:

• Repointing the x-ray-drive ports
leads to variations in incident
angles.

• The equator requires the highest
incident intensity to compensate
for higher refraction losses, lower
hydrodynamic efficiency, etc.

• 2-D effects also become
important: lateral mass flow,
lateral heat flow, etc.

• The “pointing” changes as the
target compresses.

Solution:
• Intensity variations on target

can be manipulated through a
combination of spot ellipticity
and pulse shape.
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Each sector of a DRACO simulation is driven
by an angular spectrum of rays

• The spectrum changes as a function of polar angle due
 to the nonuniform overlap of beams in the PDD configuration.

• The rays propagate and deposit energy as if each sector is 1-D;
exact temperature and density profiles are used.
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Levenberg-
Marquardt
Non-linear
optimization

TC6168a

The “open-loop” model optimizes the ring energy
to minimize the nonuniformity of absorbed energy

• The optimizer can be biased for different l modes.

Nonuniformity ~ 1.2%

Levenberg–
Marquardt
Nonlinear
optimization

1

0

�1z f
f (

m
m
)

1

0

�1z f
f (

m
m
)

0
�1

1

0

�1z f
f (

m
m
)

1 1
0�1

y
ff  (mm) xff (

mm)

Ring #3; equatorial

Ring #1; polar

0
�1

1

0

�1z f
f (

m
m
)

1
1

0
�1

y
ff  (mm) xff (

mm)

Ring #2

• Current state of the absorption profile is sampled
from DRACO; determines surface illumination pattern.

• Surface-illumination pattern due to each ring
is decomposed and fed into optimizer; forms basis set.
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The “closed-loop” model incorporates feedback
to predict the required compensating pulse shapes

• Compensates for hydro-efficiency,
lateral thermal transport, and other 2-D effects.

Nonlinear
optimization

DRACO hydro
time step

Sample
perturbation

surface

Percent perturbation;
PID feedback

Absorption
model basis set

Sample
absorption

profile

Open-loop model

• Supplies higher intensity to regions on target
that require compensation.
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The optimized ring pulse shapes drive the shell
with improved low-l-mode nonuniformity
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Evidence of hot-spot formation is seen
near the end of the deceleration phase
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The optimizer compensates for 2-D effects
by increasing the equatorial drive relative to the pole
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The “closed-loop” model shows a dramatic
improvement for l = 2
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The angular spectrum in the direct-drive configuration
is more evenly distributed than PDD
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Feedback gains are selected
using the following prescription*

• Kd and Ki are set to 0

• Kp is varied until oscillation
breaks out; note Kcr and Pcr

• Kp = 0.6 Kcr

• Ki = Kp/(0.5 ¥ Pcr)

• Kd = Kp (0.125 ¥ Pcr)

*Ziegler-Nichols tuning rules, K. Ogata, Modern Control
Engineering, 3rd ed. (Prentice Hall, New Jersey, 1997), pp. 672–674.
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Optimized pulse shapes compensate 2-D effects
due to nonuniform beam incident angles

Summary/Conclusions

• PDD enables direct-drive ignition experiments while the NIF
is in the x-ray drive configuration.

• The 48 quads are logically grouped into three rings based
on their incident angles: 26∞, 59∞, and 82∞.

• Rings with different incident angles lead to variations around
the target.

– laser absorption

– hydrodynamic efficiency

– lateral heat and mass flow

• A nonlinear optimization algorithm within a feedback loop
generates compensated ring pulse shapes.


