Validation of Numerical Modeling Using Planar Direct-Drive Experiments Performed on OMEGA

University of Rochester Laboratory for Laser Energetics 45th Annual Meeting of the American Physical Society Division of Plasma Physics Albuquerque, NM 27–31 October 2003

UR 🔌

Collaborators

T. R. Boehly, S. P. Regan, E. Vianello, H. Sawada, J. P. Knauer,
O. V. Gotchev, P. B. Radha, V. A. Smalyuk, P. W. McKenty,
S. Skupsky, A. V. Maximov, J. A. Delettrez, R. Epstein, R. S. Craxton,
D. D. Meyerhofer, and T. C. Sangster

University of Rochester Laboratory for Laser Energetics

The flux-limited thermal transport with f = 0.06 adequately models the shock formation and the early nonuniformity growth

- Designing a robust direct-drive-ignition target requires experimentally validated modeling of
 - hydrodynamic efficiency and laser coupling (shock timing experiments¹, line emission from microdot²)
 - EOS (shock timing)
 - nonuniformity growth (RM growth³)

¹E. Vianello, next talk, L02.002

²H. Sawada, L02.003

³O. Gotchev, this conference, Q03.002

Series of single- and double-shock experiments have been conducted to study early-time shock propagation¹

¹E. Vianello, next talk LO2.002

The flux-limited heat conduction model is consistent with the experimental data

Problems in matching the experimental shock data and *LILAC* simulations triggered revisions in absorption and heat transport packages

Early perturbation evolution is sensitive to conditions within the corona^{1,2}

UR 🔌

 ¹ V. N. Goncharov, Phys. Rev. Lett. 82, 2091 (1999).
 ² Y. Aglitsky *et al.*, Phys. Rev. Lett. 87, 265001 (2001).

First, corrections to heat transport and momentum equations were considered

Summary/Conclusions

The flux-limited thermal transport with f = 0.06 adequately models the shock formation and the early nonuniformity growth

- Designing a robust direct-drive-ignition target requires experimentally validated modeling of
 - hydrodynamic efficiency and laser coupling (shock timing experiments¹, line emission from microdot²)
 - EOS (shock timing)
 - nonuniformity growth (RM growth³)

¹E. Vianello, next talk, L02.002 ²H. Saurada, L02.002

³O. Gotchev, this conference, Q03.002