Measurements of shock timing and ρR evolution of D³He implosions at OMEGA

Johan Frenje MIT - Plasma Science and Fusion Center

45th Annual Meeting of the Division of Plasma Physics Albuquerque , NM October 27-31, 2003

C. K. Li, F. H. Séguin, J. DeCiantis, J. R. Rygg, S. Kurebayashi,

B. E. Schwartz and R. D. Petrasso*

Plasma Science and Fusion Center Massachusetts Institute of Technology

J. Delettrez, V. Yu. Glebov, F. J. Marshall, D. D. Meyerhofer⁺,

T. C. Sangster, J. M. Soures and C. Stoeckl

Laboratory for Laser Energetics

University of Rochester

* Also Visiting Senior Scientist at LLE

⁺ Also Department of Mechanical Engineering, Physics and Astronomy.

Shock timing and ρR evolution of D³He implosions have been measured at OMEGA

- D³He burn history contains a shock component in addition to a compression history similar to that of DD neutrons.
- T_i(t), shock time and shock-burn duration have been obtained and compared with 1-D calculations.
- Low-mode ρR asymmetries at shock time are amplified and mirrored at bang time, and correlated to laser drive asymmetry (for a large imposed ℓ = 1).
- We are looking into ³He-seeded cryogenic D₂ implosions.

Related talks and posters at this conference:

- F.J. Marshall et al., CO2.005
- R. Epstein et al., CO2.008
- R. D Petrasso et al., CO2.009
- F. H. Séguin et al., CO2.011
- C. K. Li et al., CO2.012
- R. Rygg et al., CO2.013
- J. DeCiantis et al., CO2.015
- V. Yu. Glebov et al., UP1.007
- D. Wilson et al., B12.04

Recent related papers:

R. D. Petrasso et al., Phys. Rev. Letters 90 (2003) 095002.

- V. A. Smalyuk et al., Phys. Rev. Letters 90 (2003) 135002.
- C. K. Li et al., submitted to Phys. Rev. Letters.

- Principle of measuring ρR evolution and D³He burn history
- Experiments
- Effects causing time dispersion in measured D³He burn history data
- Analysis method
- Results
- ³He-seeded cryogenic D₂ implosions

ρR(t) can be inferred from D³He proton spectrum and D³He burn history

Three types of capsules were imploded

- Shock time
- Shock burn duration
- Nature of compression burn
- T_i evolution
- Evolution of ρR
- Evolution ρR asymmetries

D³He proton spectra were simultaneously measured from different directions

A proton temporal diagnostic (PTD) was implemented for measurements of D³He burn history

V. Yu. Glebov et al., UP1.007

D³He burn history and D³He proton spectra were simultaneously measured

PTD data must be corrected for time dispersion

Effects causing time dispersion:

- <u>ρR evolution:</u>
- Source and shell geometry:
- Doppler broadening from T_i(t):
- PTD response:

Needs to be determined.

From Proton Core Imaging data and X-ray imaging data.

From measurements.

From Monte-Carlo simulations.

Using DD burn history, ρR(t) was initially determined from a fit to measured D³He-proton spectrum

A convolution of D³He burn history and components causing time dispersion is fitted to measured PTD data

Using unfolded D³He burn history, ρ**R(t) was finally** determined from a fit to measured D³He-proton spectrum

D³He burn history contains a shock component in addition to a compression history similar to that of DD neutrons

By comparing measured D³He and DD bang times to 1-D calculations effects of mix can be addressed

Due to a broader burn profile, DD burn history is more sensitive to mix than D³He burn history

Shock time and shock-burn duration have been obtained and compared to 1-D calculations

Evolution of T_i can be inferred from the ratio of D³He and DD burn histories

Evolution of T_i has been obtained and compared to 1-D calculations

Evolution of T_i has been obtained and compared to 1-D calculations

Evolution of T_i has been obtained and compared to 1-D calculations

How do ρR and ρR asymmetries evolve in time?

Low-mode ho R asymmetry at shock time is amplified and mirrored at bang time

Low-mode pR asymmetry is primarily driven by capsule convergence

Shock time ρ **R** asymmetry growth ξ (t) can be expressed as 20 pR [mg/cm²] $\xi(t) = \frac{Cr(t) - 1}{Cr_{e} - 1} \frac{\langle \rho R(t) \rangle}{\langle \rho R \rangle_{e}}$ 10 Convergence ratio Cr(t) is defined as 100 **Bang time** $\mathbf{Cr(t)} = \sqrt{\frac{\langle \rho \mathbf{R}(t) \rangle}{f \rho_0 \mathbf{R}_0}}$ ρR [mg/cm²] 50 At shock time, $Cr_s \approx 5$ $\xi(t) \sim 2 \frac{\langle \rho R(t) \rangle}{\langle \rho R(t) \rangle}$ At bang time, $Cr_b \approx 10$ 0 45 90 135 180 0 Angle Θ

Is there a correlation between ρR asymmetry and laser drive asymmetry (for a large imposed $\ell = 1$)?

F.J. Marshall et al., CO2.005 F. H. Séguin et al., CO2.011

ρ R asymmetry is strongly correlated to laser drive asymmetry (for a large imposed ℓ = 1)

* C. K. Li et al., submitted to Phys. Rev. Letters.
** F. H. Séguin et al., CO2.011

We are looking into ³He-seeded cryogenic D₂ implosions

Summary

Shock timing and ρR evolution of D³He implosions have been measured at OMEGA

- D³He burn history contains a shock component in addition to a compression history similar to that of DD neutrons.
- T_i(t), shock time and shock-burn duration have been obtained and compared with 1-D calculations.
- Low-mode ρR asymmetries at shock time are amplified and mirrored at bang time, and correlated to laser drive asymmetry (for a large imposed $\ell = 1$).
- We are looking into ³He-seeded cryogenic D₂ implosions.

