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Abstract

A method for determining ρRfuel of cryogenic deuterium-tritium plasmas 
involves measurement of the energy spectrum of elastically-scattered, 
primary neutrons. A spectrometer has been designed for doing this at 
OMEGA and the NIF, using scattered neutrons in the energy range 7-10 
MeV to determine ρRfuel and primary neutrons to measure Ti. The 
instrument utilizes a magnet and a conversion foil for production of 
charged particles. A large dynamic range (>106) will allow operation at 
yields as low as 1012. This will allow ρRfuel and Ti measurements of 
warm and cryogenic DT targets at OMEGA, and fizzle and ignited 
cryogenic DT targets at the NIF. 

This work was supported in part by the US DoE (contract W-7405-ENG-48 
with LLNL, grant DE-FG03-99DP00300 and Cooperative Agreement DE-
FC03-92SF19460), LLE (subcontract P0410025G), and LLNL (subcontract 
B313975). 



MRS strengths at OMEGA and the NIF

• ρRfuel of warm, fizzle and ignited implosions can be measured at the NIF, 
and similarly for warm and cryo DT at OMEGA.

• Large dynamic range is achievable. (Y1n ~ 1012 – 1019)

• Flexible instrument: - Two different types of detectors can be used. 
- Recoils of either p or d can also be used.

• Authenticate the data through the primaries.

• A trade off can be made between high resolution and high efficiency, 
depending on exp.

• Large signal-to-background ratio for most applications. 

• Wide-band spectrometer (6-24 MeV p); (3-12 MeV d).

• High-resolution spectrometer (∆EI/E = 1.8%).



ρRfuel can be determined by measuring number of  primary 
neutrons elastically scattered (Yscatt) from fuel ions

The relationship between ρRfuel and Yscatt is

(1)

mp = protons mass, γ = nd/nt, σd (σt) = elastic cross section for deuterons 
(tritons), and Y1n is primary yield.  For specificity, we’ll focus on the energy 
range 7 to 10 MeV for the scattered neutrons); the total cross sections used 
in Eq. (1) must then be replaced by the effective cross sections for 
generating scattered neutrons in this energy range. 
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Nature of relevant neutron spectra at OMEGA and NIF

To illustrate the nature of relevant spectra, and to provide a basis for 
evaluating the practical utility of the MRS on OMEGA and the NIF, following 
spectra were used in this work.
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Nature of relevant neutron spectra at OMEGA and NIF, continued
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Nature of relevant neutron spectra at OMEGA and NIF, continued
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MRS principle
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MRS principle - Detection efficiency (εn)

• The detection efficiency can be expressed as

∫∝
"rΩ"

lab
nn Ωd
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Ωn “Ωr”

• Maximum differential cross section at forward scattering angles, 
focusing aspects and large aperture significantly enhances εn.



MRS principle - Resolution (∆EI)

• Resolution (∆EI) of the spectrometer is defined as the energy 
distribution at the focal plane when viewing a fluence of mono-
energetic neutrons. The resolution can be written as

∆Ef = Energy loss in foil     ∝ foil thickness
∆Ek      =  Kinematic energy broadening       ∝ foil and aperture size
∆Es      =   Ion optical energy broadening     ∝ magnet performance
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Design philosophy

Initial and potentially the final implementation
(ρRfuel and Ti)
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Design philosophy

Potential upgrade
(ρRfuel)

1. Coincidence CR-39 
2. CVD detectors or Current-mode scintillators

Aperture
Target
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neutrons



Design of the MRS at OMEGA and the NIF

Magnet
CH-foil

~ 215 cm (Ω)
~ 550 cm (NIF)

~ 15 cm (Ω)
~ 20 cm (NIF)

~ 35 cm~ 11 cm wide
aperture

~ 100 cm

~ 35 cm

B-field = 0.9 Tesla
Pole gap = 3 cm
Energy range = 6 - 24 MeV (p)

Weight: 490 lbs
Cost: $300k
Constr. time: 24 - 28 weeks

Target

24 MeV
(p)

6 MeV
(p)

J. A. Frenje et al., Rev. Sci. Instrum. 72 (2001) 854.



We will develop coincidence CR-39 and one of two 
electronic detector systems

Coincidence CR-39 CVD-strip detectors Current-mode scintillators
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We will develop coincidence CR-39 and one of two 
electronic detector systems

Detector Advantages Disadvantages

Coincidence Totally insensitive to            9-12 hour turn around
CR-39** EMP, X-rays & γ-rays

Shielding not required
Robust technology

CVD-strip Large dynamic range Sensitive to EMP
detector Fast 

Insensitive to γ’s
Radiation hardened

Current-mode Fast Sensitive to γ’
scintillator Well-known technology        Sensitive to EMP

** At Vulcan, only CR-39, radiochromic film, and film can be reliably used.



MRS-conceptual design



External B-fields from MRS are negligible
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Performance of MRS at OMEGA and the NIF

Facility Type of Foil εn ∆EI
measurement [keV]

OMEGA ρRfuel & Ti CH 5×10-10 250
“ ρRfuel & Ti “ 6×10-9 3000

“ ρRfuel CD 8×10-10 250
“ ρRfuel “ 1×10-8 3000

At the NIF, εn is about one order of magnitude smaller for the 
same ∆EI.



Predicted signal (S) for ρRfuel measurements of a cryo
DT target at OMEGA
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• How many photons are produced in the thin BC422 scintillator (0.25 
mm thick) by these 2600 fully stopped deuterons?

⇒ Signal ~ 2600

Calculated by Steve Hatchett
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Predicted Background (B) for ρRfuel measurements of a 
cryo DT target at OMEGA

Background (B)
• Neutron transport codes COG and TART2000 were used to predict 
neutron flux and spectrum at detector. 

• About 5×105 neutrons 
(En = 0 - 4 MeV) pass the 
detector in the signal 
time window (which is 
about 55 – 81 ns after the 
primary neutrons hit the 
detector.

Calculated by Greg Schmid



Predicted S/B ratio for ρRfuel measurements of a cryo
DT target on OMEGA

• About 1800 neutrons interact with the scintillator.

• A benchmarked Monte Carlo code predicted total number of 
produced photons by modeling scintillator geometry and 
response to the neutrons.

1800 × 0.2 MeVee

100 eV/photon
B ~ ~ 3.6×106 photons

5×107

3.6×106S/B ~ ~ 14⇒
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Predicted signal-to-background (S/B) ratio for the 
different measurements at OMEGA and the NIF

Implosion         ρRfuel  [mg/cm2]         Facility S/B S/B
(CR-39)           (BC422)

Warm DT        ~ 30* OMEGA ~ 14 ~ 9
Cryo DT          ~ 128 OMEGA ~ 27 ~ 14

Warm DT        ~ 30* NIF ~ 6 ~ 9
Cryo DT P2-fizzle ~ 1500 NIF ~ 112   ~ 170
(9x1014)
Cryo DT P6-fizzle ~ 2000 NIF ~ 113   ~ 220
(9x1014)
Ignited ~ 1850 NIF ~ 79   ~ 205
(9x1014)

Cryo D2 ~ 1500 NIF ~ 2 ~ 200



The remaining detected background can be 
separately characterized…

• by moving the foil out of the spectrometer line of sight.

• by background monitors beside the focal plane detector.



Accuracy analysis of ρRfuel measurements using the 
MRS at OMEGA

The relative statistical uncertainty in the number of measured signal events 
(S), which are generated by down-scattered neutrons, can be expressed as

(2)**

when operating the MRS at ∆EI=3000 keV. ρRfuel is given in mg/cm2. 
Eq. (2) can be rewritten as

(3)

** Eq. (2) assumes that S/B scales linearly with ρRfuel, which is the
case for electronic detection.
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ρRfuel vs Yield at OMEGA for different ∆S/S when 
operating the MRS at ∆EI = 3000 keV
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ρRfuel vs Yield at NIF for different ∆S/S when operating 
the MRS at ∆EI = 3000 keV (a), and ∆EI = 250 keV (b)
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Using the CH-foil, the MRS can measure deviations from 
Maxwellian distributions when operated at ∆EI = 250 keV
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Ti measurement is affected by ∆EI, ∆ED and number of 
counts in spectrum

The relative statistical uncertainty in the Ti measurement can be 
expressed as

(1) **

∆EI is the instrumental response function, ∆ED is the Doppler
broadening, and N is the number of counts in the spectrum.

** Eq. (1) assumes that the spectrometer response function is characte-
rized very well, ie, ∆(∆EI) = 0. The equation also assumes that   
background is negligibly small.
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∆Ti/Ti vs Yield at OMEGA for different ∆EI
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∆Ti/Ti vs Yield at the NIF for different ∆EI
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