Imaging D³He burn profiles of OMEGA implosions

Joseph DeCiantis, et.al. Plasma Science and Fusion Center Massachusetts Institute of Technology 45th Annual Meeting of the Division of Plasma Physics October 27-31st, 2003 Albuquerque, New Mexico

B. Schwartz, J. Frenje, F. Séguin, S. Kurebayashi, C. Li, and R. Petrasso*

Plasma Science and Fusion Center Massachusetts Institute of Technology

J. Delettrez, J. Soures, V. Glebov, D. Meyerhofer, P. Radha, S. Roberts, T. Sangster, and C. Stoeckl Laboratory for Laser Energetics University of Rochester

*visiting senior scientist at LLE

•Proton Core Imaging Spectroscopy (PCIS) provides radial profiles of DD and D³He proton production.

•For thin (~3 μ m) glass shell capsules, DD and D³He burn profiles were measured, from which, T_i(r) and n_i(r) profiles were inferred and then compared to 1D simulations.

•For thick (~20 μ m) CH shell capsules, D³He burn profiles were measured. The first orthogonal images were obtained.

•Burn profiles from thin and thick shell capsules were compared to demonstrate PCIS versatility.

D + ³He → α [3.6 MeV] + p[14.7 MeV] D + D → T[1.0 MeV] + p[3.0 MeV]

PCIS images proton emissions with CR-39 detector UR LLE Penumbra **Burn Region** Protons **↓ Pinhole** Tracks/cm² **CR-39** Burn radius: ~ 35-100 μm

Pinhole radius: 300 µm

Burn profiles of DD and D³He protons from a thin (2.7μm) glass shell D³He implosion

Burn profiles of DD and D³He protons from a thin (2.7μm) glass shell D³He implosion

T_i(r) and n_i(r) were inferred from these burn profiles

Shot 29827: D³He(18 atm) SiO₂[2.7 μm]

T_i(r) and n_i(r) were inferred from these burn profiles

Shot 29827: D³He(18 atm) SiO₂[2.7 μm]

T_i(r) and n_i(r) were inferred from these burn profiles

Shot 29827: D³He(18 atm) SiO₂[2.7 μm]

The measured T_i(r) and n_i(r) profiles were compared with 1D simulations

D³He burn profiles from a thick (~20µm) CH-shell D³He implosion

Orthogonal imaging is being developed to examine burn asymmetries.

Orthogonal burn profiles from a symmetric implosion give consistent results

Different implosion conditions resulted in burn regions of different sizes

Different implosion conditions resulted in burn regions of different sizes

- With Proton Core Imaging Spectroscopy (PCIS), burn profiles of D³He reactions have been obtained.
- DD and D³He burn profiles were measured for thin shell implosions. $T_i(r)$ and $n_i(r)$ profiles were inferred are compared to 1D simulations.
- The first orthogonal images were obtained for thick shell implosions.
 The next step is to examine implosions known to be asymmetric.
- PCIS is also being developed as a diagnostic to study mix effects on burn profiles.

Finding a source profile that provides the best fit

