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Adiabat shaping by relaxation with short, intense
prepulses leads to ultrahigh ablation velocities

• The adiabat shape can be controlled by varying the prepulse
   intensity and duration.

• Short, intense prepulses lead to the steepest adiabat profiles,
larger outer-surface adiabats, larger ablation velocities, and

   lower Rayleigh–Taylor growth rates.

• Due to its flexibility in shaping the adiabat, the relaxation
  method can be further optimized to minimize the imprinting
  level and/or reduce the impact of the convective instability.

Summary
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Adiabat shaping by relaxation is performed with a laser
prepulse followed by a laser shutoff and the main pulse
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The main shock (from the main pulse) shapes the adiabat
as it travels up the density profile relaxed by the prepulse
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The prepulses are long and weak; prepulse rarefaction
does not meet the prepulse shock inside the shell
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The main shock propagation through the rarefaction
wave is calculated analytically yielding a ~ 1/m5/4

• The relaxed rarefaction-wave density profile goes as ~ m3/4.

• The pressure at the shock front is constant, yielding a ~ r–g.

K. Anderson and R. Betti, Phys. Plasmas (in press).
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The prepulse is short and intense; the rarefaction wave
and prepulse shock merge inside the shell
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The relaxed density profile of the second kind can be
described by two power laws of the mass coordinate
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The shock pressure is constant for m<m* and increases
for m>m*; the pressure profile is approximately linear
in the mass coordinate
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The adiabat profile is very steep
and scales as a ~ 1/md with d ª 2

K. Anderson and R. Betti, Phys. Plasmas (in press).

Theory

Adiabat profiles of the second kind
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Including the effects of finite shock strength and finite
ablation leads to somewhat shallower adiabat profiles

Decaying shock Relaxation (1st kind) Relaxation (2nd kind)
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Adiabat shaping by relaxation of the second kind
(with short/intense prepulses) leads to ultrahigh
ablation velocities

LILAC simulations of 85-mm-thick, all-DT OMEGA capsules
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Adiabat shaping by relaxation with short, intense
prepulses leads to ultrahigh ablation velocities

• The adiabat shape can be controlled by varying the prepulse
   intensity and duration.

• Short, intense prepulses lead to the steepest adiabat profiles,
larger outer-surface adiabats, larger ablation velocities, and

   lower Rayleigh–Taylor growth rates.

• Due to its flexibility in shaping the adiabat, the relaxation
  method can be further optimized to minimize the imprinting
  level and/or reduce the impact of the convective instability.

Summary/Conclusions


