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EXAFS measurements of laser-shocked titanium
have been made

∑  Laser-shocked metals have been recently studied in LLNL by
x-ray diffraction (Bragg and Laue), observing elastic (1-D) and
plastic (3-D) compressions. Extended x-ray absorption
fine structure (EXAFS) can supplement such measurements.

∑  EXAFS can yield information on density and temperature.  

∑  High-contrast EXAFS modulations of polycrystalline Ti absorber
were obtained using a laser-imploded spherical target as backlighter.

∑  For a shock strength of ~0.5 Mbar we obtained EXAFS spectra
that indicate compression of ~1.3, in agreement with simulations
and measured shock speed.

∑  The decay rate of the EXAFS modulations (with wave number)
is much faster than expected due the temperature rise
and is attributed to increased crystal disorder, most probably
due to the a-Ti Æ w-Ti phase transformation.

Summary
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EXAFS is modulations in x-ray absorption due
to interference of the ejected electron wave
function with reflections from neighboring atoms

• If the two electron waves are
– in phase:  maximum absorption

 – out of phase:  minimum absorption

• Phase is kelectronR.

• Modulation frequency depends on R and, hence, on density.

• For higher temperatures, vibrations reduce coherence,
leading to less modulation.

�2k2
electron   2m = Eph – EK

[Ephoton > EK]
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EXAFS model shows the dependence of modulations in
the x-ray absorption coefficient on density and temperature

• Model for modulations in reduced x-ray absorption coefficient
above the K edge:

�2k2/2m = Eph – EK

c(k) = SjNjFj(k) exp [–2s2k2 – 2Rj/l(k)] sin[2kRj + fj(k)]/kRj
2

• For shock heating, compression increases qD ~ hnm/kB
(nm, the maximum lattice frequency ~ r1/3).

Damping due
to lattice vibrations

s2 = f(T/qD)
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Vibration amplitude increases with temperature
but decreases with compression (through QD)
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Fitting EXAFS model to experimental spectrum of cold,
undriven target yields the expected T, r
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EXAFS is observed in thick metal foils backlit
by a spherical target implosion
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Smooth x-ray continuum from imploding target
is suitable for EXAFS measurement (shot 23134)

1018
F

lu
en

ce
 (

ke
V

/k
eV

)

Photon energy (keV)

1017

4.5 5.0 5.5 6.0 6.5 7.0



E11860a

ASBO measures shock-arrival time at back of Ti;
speed (through Hugoniot) confirms EXAFS compression
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∑  Lateral nonuniformity is ±10% in speed, ±4% in pressure.



E11848

Heating of Ti foil (by radiation) to ~0.5 eV causes
EXAFS spectrum to disappear
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Preheat determination: fitting EXAFS spectrum
of undriven target yields T = 40 meV
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LILAC profiles (with QEOS) for Ti shocked by
a 3-ns pulse at 0.5 TW/cm2 are quite uniform axially
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EXAFS spectrum (unshocked target) before Fourier filtering
shows good S/N ratio
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Longer EXAFS wavelength after shock passage
indicates compression (¥ 1.3)
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EXAFS model fit yields compression of 1.3 (assumed
3-D); decay rate depends on T but includes the effect
of Ti crystal phase transition
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Shock-compressed EXAFS spectrum fitted with model
for 3-subshell w-Ti at C = 1.3 and T = 0.08 eV
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Hugoniot

EXAFS is better suited for diagnosing
isentropic compressions (ICE) than shocks
because they access higher r, lower  T
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c2
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c2 analysis of EXAFS is used for finding best fit;
error found from Hessian matrix (unshocked case)
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High-contrast EXAFS modulations of polycrystalline Ti
absorber have been demonstrated using a laser-imploded
target as backlighter
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∑  For a shock strength of ~0.5 Mbar we obtained EXAFS spectrum
that indicates compression of ~1.3, in agreement with simulations
and shock-speed measurement.

∑  The decay rate of the EXAFS modulations (with wave number)
is much faster than expected due to the temperature rise
and is attributed to increased crystal disorder, most probably
due to the a-Ti Æ w-Ti phase transformation.

∑ Future experiments that can improve our understanding include:
– simultaneous measurements of EXAFS and multidirectional

diffraction on a single-crystal sample with no phase transformation.

– use EXAFS in isentropic compression experiments (ICE)
where higher density and lower temperature than in shocks
make EXAFS a more-suitable technique.

Conclusions


