#### Hydrodynamic Growth of Shell Modulations in the Deceleration Phase of Spherical Direct-Drive Implosions



V. A. Smalyuk University of Rochester Laboratory for Laser Energetics American Physical Society Division of Plasma Physics Orlando, FL 11–15 November 2002

#### Contributors



#### Laboratory for Laser Energetics, University of Rochester

| J. A. Delettrez              | F. J. Marshall   | T. C. Sangster |
|------------------------------|------------------|----------------|
| S. B. Dumanis                | D. D. Meyerhofer | S. Skupsky     |
| (Harley High School student) | P. B. Radha      | J. M. Soures   |
| V. Yu. Glebov                | S. P. Regan      | C. Stoeckl     |
| V. N. Goncharov              | S. Roberts       | R. P. J. Town  |
| J. P. Knauer                 |                  | B. Yaakobi     |

**Massachusetts Institute of Technology** 

| J. A. Frenje | R. D. Petrasso |
|--------------|----------------|
| C. K. Li     | F. H. Séguin   |

University of Nevada, Reno

D. L. McCrorey R. C. Mancini

Lawrence Livermore National Laboratory

J. Koch

# Shell modulation growth has been measured near peak compression of spherical implosions

• 20- $\mu$ m-thick CH shells with CH Ti layers, filled with 4 and 18 atm D<sup>3</sup>He, were imploded with ~ 23-kJ, 1-ns square laser pulses.

- Measured perturbations have highest amplitudes at wavelengths of about 40 to 50  $\mu\text{m}$  (corresponding to mode number  $\ell$  ~ 6).
- At peak neutron production, inner-shell areal-density modulation level,  $\delta(\rho r)/\rho r$ , is 20% and grows to ~ 50% at peak compression 100 ps later due to Rayleigh–Taylor instability.
- For the same period, shell modulations grow up to about 1.5 times due to Bell–Plesset effects.
- At peak compression the inner part of the shell has a higher modulation level than the bulk of the shell.

# Laser-induced ablation is used to generate ultra-high pressures on a fusion capsule to compress it





- BO2.001 R. Epstein *et al.*, Modeling of Fuel–Pusher Mix Effects in 1-D Simulations of Cryogenic, All-DT Ignition Capsule Implosions
- BO2.002 S. P. Regan *et al.*, Experimental Investigation of Fuel–Pusher Mix in Direct-Drive Implosions on OMEGA
- BO3.003 J. A. Frenje *et al.*, Effects of Fuel–Pusher Mix on Direct-Drive Implosions of <sup>3</sup>He-Gas-Filled, CD-Layered Plastic Capsules on OMEGA
- FO2.001 P. B. Rahda *et al.*, The Effect of Laser Nonuniformities on Plastic-Shell Direct-Drive Implosions on OMEGA
- RI1.005C. K. Li *et al.*, Capsule Areal-Density Asymmetrics and Time<br/>Evolution Inferred from 14.7-MeV Proton Line Structure in OMEGA<br/>D<sup>3</sup>He Implosions

#### Targets with titanium-doped layers were used to measure shell modulations



Core images at two x-ray energies, highly absorbed and nonabsorbed by the shell, are used to measure the integrity of the inner portion of the shell



Shell-Integrity Measurements

## X-ray framing cameras are the primary diagnostics of shell nonuniformity\*



\* V. A. Smalyuk *et al.*, Rev. Sci. Instrum. <u>72</u>, 635 (2001).

# The ratio of images above and below the *K* edge is related to areal-density modulations in the shell\*



\* V. A. Smalyuk et al., Phys. Rev. Lett. 87, 155002 (2001).

### Evolution of average titanium areal density is measured using streaked spectrometers

**Streak 22102** 4.2 4.4 **10<sup>16</sup>** 4.6 K edge Spectral intensity  $\dot{\mathbf{keV}}$ 4.8 Energy (keV) 2.0 ns **10**<sup>15</sup> 5.0 5.2 1.9 ns 10<sup>14</sup> K edge 5.4 5.0 4.5 6.0 5.5 5.6 Energy (keV) 5.8 1.8 2.2 2.0 Time (ns)

### Inner-shell modulations grow throughout the implosion's deceleration phase



#### At peak compression more-unstable implosions have a higher level of inner-shell of modulations\*



\* V. A. Smalyuk *et al.*, Phys. Plasmas <u>9</u>, 2741 (2002).

### Measured target convergencies are similar for implosions with 3 and 15 atm of DT



\* C. K. Li et al. Phys. Rev. Lett. 89, 165002-1 (2002).

UR 🔌

The target areal density grows by a factor of 1.5 from time of peak neutron production (~1.9 ns) to time of peak compression (~2.0 ns)



- Shell modulation due to Bell-Plesset (BP) convergent growth is proportional to shell thickness:  $\delta r \sim d$ .
- Measured shell integrity growth  $\delta \rho r / \rho d$  does not include Bell-Plesset effects.
- Areal density  $\rho$ d increases 1.5 times for 100 ps due to both thickness *d* and density  $\rho$ ; therefore Bell-Plesset growth is up to 1.5 times for 100 ps.

#### Targets with 18 atm are more stable than targets with 4 atm D<sup>3</sup>He in the deceleration phase of spherical implosions



E11881

## Small-scale perturbations are in their nonlinear phase during deceleration

20-µm-CH shell; 15-atm-fill laser imprint at peak neutron production  $\ell$  = 2–80



D. D. Meyerhofer *et al.*, Phys. Plasmas <u>8</u>, 2251 (2001).

- P. B. Radha *et al.*, Phys. Plasmas <u>9</u>, 2208 (2002).
- S. P. Regan *et al.*, Phys. Rev. Lett. <u>89</u>, 085003-1 (2002).
- C. K. Li *et al.*, Phys. Rev. Lett. <u>89</u>, 165002-1 (2002).

Inner-shell modulation grows from 20% at peak neutron production to 50% at peak compression for ~ 100 ps due to Rayleigh–Taylor instability.



 In addition, the shell modulations grow by up to a factor of ~ 1.5 due to Bell-Plesset effects.

### The central part of the shell is more uniform than the inner and outer surfaces\*



\* V. A. Smalyuk *et al.*, submitted to Phys. of Plasmas (2002).

### Future work will combine time-resolved shell areal-density with fuel-shell mix measurements

- Differential imaging with titanium 1s–2p absorption will provide much more sensitive shell-integrity  $\delta(\rho r)/\rho r$  measurements.
- Absorption spectroscopy of titanium 1s–2p region will provide shelldensity, temperature, and areal-density measurements.
- Time-resolved fuel-shell mix measurements will be performed using CD shells filled with T<sub>2</sub> fuel.
- Time-resolved spectroscopic measurements of mix will be performed with CI dopants in the shell and Ar dopants in the fuel.

# Shell modulation growth has been measured near peak compression of spherical implosions

• 20- $\mu$ m-thick CH shells with CH Ti layers, filled with 4 and 18 atm D<sup>3</sup>He, were imploded with ~ 23-kJ, 1-ns square laser pulses.

- Measured perturbations have highest amplitudes at wavelengths of about 40 to 50  $\mu\text{m}$  (corresponding to mode number  $\ell$  ~ 6).
- At peak neutron production, inner-shell areal-density modulation level,  $\delta(\rho r)/\rho r$ , is 20% and grows to ~ 50% at peak compression 100 ps later due to Rayleigh–Taylor instability.
- For the same period, shell modulations grow up to about 1.5 times due to Bell–Plesset effects.
- At peak compression the inner part of the shell has a higher modulation level than the bulk of the shell.