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E11879

Shell modulation growth has been measured
near peak compression of spherical implosions

• 20-mm-thick CH shells with CH Ti layers, filled with 4 and 18 atm
D3He, were imploded with ~ 23-kJ, 1-ns square laser pulses.

• Measured perturbations have highest amplitudes at wavelengths
of about 40 to 50 mm (corresponding to mode number l ~ 6).

• At peak neutron production, inner-shell areal-density modulation
level, d(rr)/rr, is 20% and grows to ~ 50% at peak compression
100 ps later due to Rayleigh–Taylor instability.

• For the same period, shell modulations grow up to about 1.5 times
due to Bell–Plesset effects.

• At peak compression the inner part of the shell has a higher
modulation level than the bulk of the shell.

Summary



Laser-induced ablation is used to generate ultra-high
pressures on a fusion capsule to compress it
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Targets with titanium-doped layers were used
to measure shell modulations
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Core images at two x-ray energies, highly absorbed
and nonabsorbed by the shell, are used to measure
the integrity of the inner portion of the shell
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X-ray framing cameras are the primary
diagnostics of shell nonuniformity*

Shell-Integrity Measurements

X rays

100 mm

Target at peak
of compression

6-mm
pinhole array

X-ray framing
camera

Dt = 40 ps

Ti filter

Fe filter

* V. A. Smalyuk et al., Rev. Sci. Instrum. 72, 635 (2001).
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The ratio of images above and below the K edge
is related to areal-density modulations in the shell*

m>K, m<K:  titanium absorption rates above and below the K edge
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* V. A. Smalyuk et al., Phys. Rev. Lett. 87, 155002 (2001).
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Evolution of average titanium areal density
is measured using streaked spectrometers
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Inner-shell modulations grow throughout
the implosion’s deceleration phase
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At peak compression more-unstable implosions
have a higher level of inner-shell of modulations*

* V. A. Smalyuk et al., Phys. Plasmas 9, 2741 (2002).
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LILAC calculated
at peak neutron

production

Measured data
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implosions with 3 and 15 atm of DT

E11125a * C. K. Li et al. Phys. Rev. Lett. 89, 165002-1 (2002).
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The target areal density grows by a factor of 1.5
from time of peak neutron production (~1.9 ns)
to time of peak compression (~2.0 ns)

•  Shell modulation due to Bell-Plesset (BP) convergent growth is proportional
to shell thickness: dr ~ d.

•  Measured shell integrity growth drr/rd does not include Bell-Plesset effects.

• Areal density rd increases 1.5 times for 100 ps due to both thickness d and
density r; therefore Bell-Plesset growth is up to 1.5 times for 100 ps.
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Targets with 18 atm are more stable than targets
with 4 atm D3He in the deceleration phase of
spherical implosions
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Small-scale perturbations are in their
nonlinear phase during deceleration

20-mm-CH shell; 15-atm-fill laser imprint at peak neutron production
l = 2–80

• Fuel–shell mix has
been measured with 
neutron, particle, and 
spectroscopic diagnosis.

D. D. Meyerhofer et al., Phys. Plasmas 8, 2251 (2001).
P. B. Radha et al., Phys. Plasmas 9, 2208 (2002).
S. P. Regan et al., Phys. Rev. Lett. 89, 085003-1 (2002).
C. K. Li et al., Phys. Rev. Lett. 89, 165002-1 (2002).
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Inner-shell modulation grows from 20% at peak neutron
production to 50% at peak compression for ~ 100 ps
due to Rayleigh–Taylor instability.

• In addition, the shell modulations grow by up to a factor of ~ 1.5
due to Bell-Plesset effects.
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The central part of the shell is more uniform
than the inner and outer surfaces*

* V. A. Smalyuk et al., submitted to Phys. of Plasmas (2002).
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Future work will combine time-resolved shell areal-density
with fuel–shell mix measurements

• Differential imaging with titanium 1s–2p absorption will provide
much more sensitive shell-integrity d(rr)/rr measurements.

• Absorption spectroscopy of titanium 1s–2p region will provide shell-
density, temperature, and areal-density measurements.

• Time-resolved fuel–shell mix measurements will be performed using
CD shells filled with T2 fuel.

• Time-resolved spectroscopic measurements of mix will be performed
with Cl dopants in the shell and Ar dopants in the fuel.

Future Work
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Shell modulation growth has been measured
near peak compression of spherical implosions

• 20-mm-thick CH shells with CH Ti layers, filled with 4 and 18 atm
D3He, were imploded with ~ 23-kJ, 1-ns square laser pulses.

• Measured perturbations have highest amplitudes at wavelengths
of about 40 to 50 mm (corresponding to mode number l ~ 6).

• At peak neutron production, inner-shell areal-density modulation
level, d(rr)/rr, is 20% and grows to ~ 50% at peak compression
100 ps later due to Rayleigh–Taylor instability.

• For the same period, shell modulations grow up to about 1.5 times
due to Bell–Plesset effects.

• At peak compression the inner part of the shell has a higher
modulation level than the bulk of the shell.

Summary/Conclusion


