Measurement of ρR-asymmetry time evolution in implosions at OMEGA

Fredrick H. Séguin et al.
Massachusetts Institute of Technology
Plasma Science and Fusion Center

44th APS DPP Meeting, 2002
Contributors

M.I.T.
Plasma Science
and Fusion Center

J.A. Frenje
C.K. Li
R.D. Petrasso*
J.R. Rygg
F.H. Séguin

University of Rochester
Laboratory for
Laser Energetics

J.A. Delettrez
J.M. Soures
V.N. Glebov
V. Goncharov
J. Knauer
D.D. Meyerhofer
P.B. Radha
T.C. Sangster
C. Stoeckl

Los Alamos
National
Laboratory

N. Hoffman
D. Wilson

*Visiting Scientist, LLE
Outline

- How we measure ρR asymmetries

- How information about capsule structure at two distinct times is contained in spectra of 14.7-MeV D^3He protons

- Preliminary results indicating that low-mode-number ρR asymmetries at compression time have observable precursors ~ 400 ps earlier, and have been amplified by $\sim x10$
Low-mode ρR asymmetries are observed by measuring D^3He proton energies at different angles.

We measure:
$$\bar{E}(\theta, \phi)$$
$$\Delta E(\theta, \phi) \equiv E_{\text{birth}} - \bar{E}(\theta, \phi)$$

We infer:
$$\rho R(\theta, \phi) [\propto \Delta E(\theta, \phi)]$$
$$<\rho R>$$
$$\delta \rho R(\theta, \phi) \equiv \rho R(\theta, \phi) - <\rho R>$$
$$<\delta \rho R>_{\text{rms}}$$
Low-mode ρR asymmetries are observed by measuring D^3He proton energies at different angles

“Low-mode” ($\ell \leq 4$), because each $\bar{E} (\theta, \phi)$ averages over a significant part of the shell.

We measure:

$$\bar{E} (\theta, \phi)$$
$$\Delta E (\theta, \phi) \equiv E_{\text{birth}} - \bar{E} (\theta, \phi)$$

We infer:

$$\rho R(\theta, \phi) \quad [\propto \Delta E (\theta, \phi)]$$
$$<\rho R>$$
$$\delta \rho R (\theta, \phi) \equiv \rho R(\theta, \phi) - <\rho R>$$
$$<\delta \rho R>_{\text{rms}}$$
We’ll be studying 3He-filled capsules with thick CH shells

Room temperature capsules:

- 18-24 atm 3He
- 24-27 μm CH
- ~500 μm

60-Beam OMEGA laser:

- Pulse shape: 1-ns square
- Beam smoothing: 2D-SSD + PS
- On-target energy: ~22 kJ
There are two distinct time intervals during implosion when charged particles are generated*

(1) $t \approx 1.7 \text{ ns}$
1st Shock coalescence
$\rho R \sim 13 \text{ mg/cm}^2$

(2) $t \approx 2.1 \text{ ns}$
Compression burn
$\rho R \sim 70 \text{ mg/cm}^2$

Each spectrum can be divided into two components with different information content.
We want to compare structure at the two times

\[\langle \rho R_S \rangle = a \langle \rho R_C \rangle \] (growth in \(\langle \rho R \rangle \))

\[\langle \delta \rho R_S \rangle_{\text{rms}} = b \langle \delta \rho R_C \rangle_{\text{rms}} \] (growth in asymmetry amplitude)

\[\delta \rho R_S (\theta, \phi) = c \delta \rho R_C (\theta, \phi) \] (are angular structures correlated?)
Up to 11 ports on the OMEGA target chamber can be used for charged-particle spectrometers.

- **Yellow** = Wedge-Range-Filter proton spectrometers (WRFs)
- **Light Blue** = Magnet-based charged-particle spectrometers (CPSs)
Multiple spectra can be measured during each shot.
Each spectrum can be divided into two components with different \overline{E}.
For each component, there is a $< \rho_R >$ and a distribution of deviations $\delta \rho_R$ from $< \rho_R >$.
We can look for a correlation between asymmetries at the two times by plotting $\delta \rho_{R_s}$ vs. $\delta \rho_{R_c}$.
We need to use data from many implosions

\[\langle \delta \rho R_C \rangle_{\text{rms}} \approx 8 \text{ mg/cm}^2\]

\[\langle \delta \rho R_S \rangle_{\text{rms}} \approx 0.9 \pm 0.5 \text{ mg/cm}^2\]
On average, there is a correlation between ρR asymmetries at the two times

Compensating for known correlations between uncertainties in $\delta \rho_R$ and $\delta \rho_S$,

$\frac{\delta \rho_S}{\delta \rho_R} \approx 0.04 \pm 0.04$

The part of $<\delta \rho_S>_{\text{rms}}$ correlated with $\delta \rho_R$ is

$(0.04 \pm 0.04) <\delta \rho_R>_{\text{rms}} \approx 0.3 \pm 0.3 \text{ mg/cm}^2$
Preliminary conclusions

Shock Time vs. Compression Time

<table>
<thead>
<tr>
<th></th>
<th>Shock Time</th>
<th>Compression Time</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle \rho R \rangle$ (mg/cm2)</td>
<td>13</td>
<td>70</td>
<td>$\langle \rho R \rangle$ grows by $\sim x5$</td>
</tr>
<tr>
<td>$<\delta \rho R>_{\text{rms}}$</td>
<td>0.9 ± 0.5</td>
<td>8</td>
<td>The rms amplitude of low-mode ($\ell \sim 1-4$) structure grows by $\sim x10$</td>
</tr>
<tr>
<td>Part of $<\delta \rho R>_{\text{rms}}$ correlated with compression value</td>
<td>0.3 ± 0.3</td>
<td>8</td>
<td>Some of the structure retains phase coherence, some doesn’t</td>
</tr>
</tbody>
</table>

- **Future work** has to increase the accuracy of these measurements with:
 - More spectrometers per shot
 - More shots
 - Smaller measurement errors
Some related talks

<table>
<thead>
<tr>
<th>Overview of charged-particle asymmetry measurements</th>
<th>Asymmetry</th>
<th>Shock</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.N. Goncharov</td>
<td>RI1.004</td>
<td>X</td>
</tr>
<tr>
<td>I.V. Igumenshchev et al.</td>
<td>FO2.005</td>
<td>X</td>
</tr>
<tr>
<td>C. K. Li et al.</td>
<td>RI1.005</td>
<td>X</td>
</tr>
<tr>
<td>F. J. Marshall et al.</td>
<td>GO2.007</td>
<td>X</td>
</tr>
<tr>
<td>P. W. McKenty et al.</td>
<td>GO2.008</td>
<td>X</td>
</tr>
<tr>
<td>R. D. Petrasso et al.</td>
<td>GO2.015</td>
<td></td>
</tr>
<tr>
<td>P. B. Radha et al.</td>
<td>FO2.003</td>
<td>X</td>
</tr>
<tr>
<td>R. Rygg et al.</td>
<td>GO2.014</td>
<td>X</td>
</tr>
<tr>
<td>B. Schwartz et al.</td>
<td>KP1.147</td>
<td></td>
</tr>
<tr>
<td>V. A. Smalyuk et al.</td>
<td>QI1.005</td>
<td>X</td>
</tr>
<tr>
<td>J. M. Soures et al.</td>
<td>GO2.005</td>
<td>X</td>
</tr>
</tbody>
</table>