Measurement of ρR-asymmetry time evolution in implosions at OMEGA

Fredrick H. Séguin et al. Massachusetts Institute of Technology Plasma Science and Fusion Center

44th APS DPP Meeting, 2002

Contributors

M.I.T. Plasma Science and Fusion Center

J.A. Frenje C.K. Li R.D. Petrasso* J.R. Rygg F.H. Séguin University of Rochester Laboratory for Laser Energetics

> J.A. Delettrez J.M. Soures V.N. Glebov V. Goncharov J. Knauer D.D. Meyerhofer P.B. Radha T.C. Sangster C. Stoeckl

Los Alamos National Laboratory

N. Hoffman D. Wilson

- How we measure ρR asymmetries
- How information about capsule structure at two distinct times is contained in spectra of 14.7-MeV D³He protons
- Preliminary results indicating that low-mode-number ρR asymmetries at compression time have observable precursors ~400 ps earlier, and have been amplified by ~x10

Low-mode ρR asymmetries are observed by measuring D³He proton energies at different angles

Low-mode ρR asymmetries are observed by measuring D³He proton energies at different angles

We measure:

$$\overline{\mathsf{E}} (\theta, \phi)$$
$$\Delta \mathsf{E} (\theta, \phi) \equiv \mathsf{E}_{\mathsf{birth}} - \overline{\mathsf{E}} (\theta, \phi)$$

We infer:

 $\rho \mathbf{R}(\theta, \phi) \quad [\infty \Delta \mathbf{E} (\theta, \phi)] \\ < \rho \mathbf{R} > \\ \delta \rho \mathbf{R} (\theta, \phi) \equiv \rho \mathbf{R}(\theta, \phi) - < \rho \mathbf{R} > \\ < \delta \rho \mathbf{R} >_{rms}$

We'll be studying D³He-filled capsules with thick CH shells

Room temperature capsules:

60-Beam OMEGA laser:

Pulse shape:1-ns squareBeam smoothing:2D-SSD + PSOn-target energy:~22 kJ

There are two distinct time intervals during implosion when charged particles are generated*

*R.D. Petrasso et al., Phys. Rev. Lett. (to be published)

Each spectrum can be divided into two components with different information content

We want to compare structure at the two times

Up to 11 ports on the OMEGA target chamber can be used for charged-particle spectrometers

=

Wedge-Range-Filter proton spectrometers (WRFs) Magnet-based charged-particle spectrometers (CPSs)

Multiple spectra can be measured during each shot

Each spectrum can be divided into two components with different \overline{E}

For each component, there is a < ρ R > and a distribution of deviations $\delta \rho$ R from < ρ R >

Shot 29269 27 μm

ιm 18 atm

We can look for a correlation between asymmetries at the two times by plotting $\delta \rho R_s vs. \delta \rho R_c$

We need to use data from many implosions

On average, there is a correlation between ρ R asymmetries at the two times

Preliminary conclusions

	~ 400 - \$	500 ps	
	shock time	comp. time	Interpretation
$< \rho R > (mg/cm^2)$	13	70	$< \rho R >$ grows by ~ x5
<δρR> _{rms}	0.9 ± 0.5	8	The rms amplitude of low- mode (ℓ ~1-4) structure grows by ~ x10
Part of < δ ρR > _{rms} correlated with compression value	0.3 ± 0.3	8	Some of the structure retains phase coherence, some doesn't

• Future work has to increase the accuracy of these measurements with:

- More spectrometers per shot
- More shots
- Smaller measurement errors

Some related talks

Overview of charged-particle asymmetry measurements

		Asymmetry	Shock
V.N. Goncharov	RI1.004	X	
I.V. Igumenshchev et al.	FO2.005	X	
C. K. Li <i>et al.</i>	RI1.005	X	Х
F. J. Marshall <i>et al</i> .	GO2.007	X	
P. W. McKenty et al.	GO2.008	X	
R. D. Petrasso <i>et al</i> .	GO2.015		Х
P. B. Radha <i>et al</i> .	FO2.003	X	
R. Rygg <i>et al</i> .	GO2.014	X	Х
B. Schwartz <i>et al</i> .	KP1.147		Х
V. A. Smalyuk <i>et al</i> .	QI1.005	X	
J. M. Soures <i>et al</i> .	GO2.005	X	

