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Outline

• Charged particle measurements on OMEGA

• Shock and compression components of D-3He proton 
spectrum

• Effect of capsule parameters on timing and yield

• Temperature inferred from shock measurements

• Sources of shock spectral line broadening



Measurements of charged particles provide 
spectral*, spatial and temporal information
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*F.H. Seguin et al, Rev. Sci. Instr. (to be published)



Measurements of charged particles provide 
spectral, spatial and temporal information
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Spectra of D3He protons are routinely 
measured on OMEGA
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D3He proton spectra can be divided into 
shock* and compression components
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From compression component: • Yield
• ∆<E> ~ ρR

From shock line: • Yield
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• line width

*R.D. Petrasso et al, Phys. Rev. Lett. (to be published)



Shock and compression components
occur at different times
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1D simulations predict a smaller interval 
between shock and bang time for thinner shells
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Shock and compression components are 
strongly dependent on capsule parameters
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Shock and compression yields
compared to 1D simulations
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Ion temperature can be estimated assuming 
line width comes from doppler broadening
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Ion temperature can be estimated using 
yields of different nuclear reactions
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Ion temperature can be estimated using 
yields of different nuclear reactions
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Comparison of temperatures 
derived from different methods
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sources of broadening



Broadening due to high mode ρR 
modulations during the shock flash

p Broadening from
high mode ρR variations
at shock time

Temp difference constrains
high mode amplitude < 40%

<Ti> ratio ≈ 6.6 keV
<Ti> width ≈ 9.8 keV



Broadening due to geometrical effects from a 
spatially extended source

p Broadening from
geometry effects due to
spatial extent of source region

PCIS can directly measure the 
extent of the source region

KP1.147B. E. Schwartz et al.
GO2.015R. D. Petrasso et al.

For more on PCIS:



Temporal broadening due to ρR evolution over 
finite interval of the shock flash
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1D simulation anticipates that: 
Over ~150 ps shock interval,
ρR evolves from ~10 to ~17 mg/cm2



Summary

• ρR and yield at shock coalescence and bang time are 
studied using DD proton and D-3He proton spectra.

• Shock and compression yields are reduced for targets 
with thicker shells.

• Charged particles can be used to study capsule 
conditions during shock coalescence, including

o Ion temperature
o High mode (ℓ~50) ρR modulations
o Spatial extent
o Temporal evolution



Future work

• Develop Proton Temporal Diagnostic (PTD) and use to 
directly measure the timing and width of shock flash 
and compression burn

• Quantify sources of shock spectral line broadening  in 
order to investigate possible high mode (ℓ~50) ρR 
variations at shock time 

• Investigate possible low mode (ℓ~2) ρR structure 
growth between shock and bang time
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