Investigation of OMEGA Capsule Dynamics Using Shock Flash Measurements

J. Ryan Rygg et al. MIT - PSFC 44th American Physical Society DPP Meeting Orlando, FL, Nov 11-15, 2002

Collaborators

F.H. Séguin, J.A. Frenje, S. Kurebayashi, C.K. Li, R.D. Petrasso*, and B.E. Schwartz

Plasma Science and Fusion Center Massachusetts Institute of Technology

J.A. Delettrez, J.M. Soures, V.Yu Glebov, V.N. Goncharov, J. P. Knauer, D.D. Meyerhofer, P.B. Radha, T.C. Sangster and C. Stoeckl

Laboratory for Laser Energetics University of Rochester

N. Hoffman and D. Wilson

Los Alamos National Laboratory

*Visiting Scientist, LLE

J. Ryan Rygg et al. MIT - PSFC 44th American Physical Society DPP Meeting Orlando, FL, Nov 11-15, 2002

Outline

- Charged particle measurements on OMEGA
- Shock and compression components of D-³He proton spectrum
- Effect of capsule parameters on timing and yield
- Temperature inferred from shock measurements
- Sources of shock spectral line broadening

Measurements of charged particles provide spectral*, spatial and temporal information

*F.H. Seguin et al, Rev. Sci. Instr. (to be published)

Measurements of charged particles provide spectral, spatial and temporal information

Spectra of D³He protons are routinely measured on OMEGA

$$D + {}^{3}He \Rightarrow \alpha(3.6) + p(14.7)$$

D³He proton spectra can be divided into shock* and compression components

*R.D. Petrasso et al, Phys. Rev. Lett. (to be published)

Shock and compression components occur at different times

1D simulations predict a smaller interval between shock and bang time for thinner shells

Shock and compression components are strongly dependent on capsule parameters

Shock and compression yields compared to 1D simulations

Ion temperature can be estimated assuming line width comes from doppler broadening

If σ^{2}_{other} is neglected, derived shock temperature is:

<**T**_i> _{width} ≈ 9.8 keV

Ion temperature can be estimated using yields of different nuclear reactions

Ion temperature can be estimated using yields of different nuclear reactions

Comparison of temperatures derived from different methods

Broadening due to high mode ρR modulations during the shock flash

Broadening from high mode ρR variations at shock time

Temp difference constrains high mode amplitude < 40%

> <T_i> _{ratio} ≈ 6.6 keV <T_i> _{width} ≈ 9.8 keV

Broadening due to geometrical effects from a spatially extended source

Broadening from geometry effects due to spatial extent of source region

PCIS can directly measure the extent of the source region

For more on PCIS:

R. D. Petrasso et al.	GO2.015
B. E. Schwartz <i>et al</i> .	KP1.147

Temporal broadening due to pR evolution over finite interval of the shock flash

1D simulated proton rate and ρR

Broadening from ρR evolution during shock flash interval

Development of PTD will enable measurement of shock width

1D simulation anticipates that:

Over ~150 ps shock interval, ρR evolves from ~10 to ~17 mg/cm²

Summary

- pR and yield at shock coalescence and bang time are studied using DD proton and D-³He proton spectra.
- Shock and compression yields are reduced for targets with thicker shells.
- Charged particles can be used to study capsule conditions during shock coalescence, including
 - Ion temperature
 - High mode (*ε*~50) ρR modulations
 - Spatial extent
 - Temporal evolution

Future work

- Develop Proton Temporal Diagnostic (PTD) and use to directly measure the timing and width of shock flash and compression burn
- Quantify sources of shock spectral line broadening in order to investigate possible high mode (*ℓ*~50) pR variations at shock time
- Investigate possible low mode (*2*~2) pR structure growth between shock and bang time

