Proton Core Imaging Spectroscopy (PCIS) of OMEGA Implosions

Richard D. Petrasso, et al. MIT - Plasma Science and Fusion Center

44th Annual Meeting of the Division of Plasma Physics Orlando, FL, Nov 11-15, 2002

J.A. Frenje, F.H. Séguin, B.E. Schwartz, S. Kurebayashi, C.K. Li

Plasma Science and Fusion Center Massachusetts Institute of Technology

J.A. Delettrez, J.M. Soures, V. Y. Glebov, V. Goncharov, D.D. Meyerhofer, P. B. Radha, S. Roberts, T.C. Sangster, C. Stoeckl

Laboratory for Laser Energetics University of Rochester

N. Hoffman and D. Wilson

Los Alamos National Laboratory

- With Proton Core Imaging Spectroscopy (PCIS), the first burn profiles of DD and D³He reactions have been obtained of thinand thick-shell implosions
- T_i(r) and n_i(r) profiles have been inferred for thin-shell implosions and compared to 1-D simulations
- Burn profiles of DD and D³He reactions at shock coalescence and at bang time have been measured for thick shell implosions.

- Describe the principle of Proton Core Imaging Spectroscopy (PCIS).
- Illustrate PCIS with thin-shell implosion, obtaining DD and D³He burn profiles
- Illustrate PCIS with thick-shell implosion, obtaining DD burn profile at shock flash and D³He burn profile at bang time

PCIS details in Poster: B. E. Schwartz, et al., KP1.147

Related talks:

F. H Seguin, et al., GO2.013 R. Rygg, et al., GO2.014 V. Smalyuk, et al., QI1.005 C. K. Li, et at., RI1.005

Important reactions for Proton Core Imaging Spectroscopy (PCIS)

- D + ³He \Rightarrow p (14.7 MeV) + α (3.6 MeV)
- $D + D \Rightarrow p(3.0 \text{ MeV}) + t(1.0 \text{ MeV})$

The principle of PCIS

The principle of PCIS

Finding the radial burn profile (part 1)

Step 1: Calculate the proton hit density (N) as a function of radius in the image plane.

Finding the radial burn profile (part 2)

PCIS simultaneously measures burn profiles of DD and D³He protons for thin-glass implosions

Temperature T_i(r) is inferred from the DD and D³He burn profiles (Shot 27456)

Diag.	<t<sub>i>_{D3He} [keV]</t<sub>	<t<sub>i>_{DD} [keV]</t<sub>
PCIS	~ 15	~ 8
WRF	~ 14	-
nTOF	-	~ 10

The 1/e points are at radii 60 and 110 μm

Comparison of T_i and n_i profiles to 1-D calculations

Shot 27456

PCIS measures burn profiles of DD and D³He reactions for thick-shell implosions at shock and bang time

PCIS measures burn profiles of DD protons at shock time and D³He protons at bang time (Shot 27806)

shock time

bang time

- With Proton Core Imaging Spectroscopy (PCIS), the first burn profiles of DD and D³He reactions have been obtained of thinand thick-shell implosions
- T_i(r) and n_i(r) profiles have been inferred for thin-shell implosions and compared to 1-D simulations
- Burn profiles of DD and D³He reactions at shock coalescence and at bang time have been measured for thick shell implosions.

- Optimize PCIS instrumentation.
- Begin to build up a data base of images, and establish the range of PCIS applicability.
- Compare PCIS to x-ray and neutron images.
- Compare PCIS to 1- and 2-D simulated images.
- Investigate asymmetries in burn region, and develop algorithms to treat asymmetries.
- Obtain orthogonal images.

